
35th Nordic Workshop on
Programming Theory

(NWPT)

(Extended abstracts)

Michael Kirkedal Thomsen, Maja Hanne Kirkeby, and Fritz Henglein (eds.)

Copenhagen, November 6 - 8 2024

1

Preface

The 35th Nordic Workshop on Programming Theory (NWPT) is an annual
regional-scope workshops on programming theory, targeted especially at younger
researchers. It is idealized to present recent results and/or work-in-progress,
and to meet colleagues from the Nordic and Baltic countries.

It has a long tradition and this year will mark it’s 35th edition. The work-
shop attracts PhD students and researchers from the Nordic region, and in
recent years, it has expanded to include the Baltic countries as well. It serves
as a valuable platform for young PhD students to present their research ideas
in a friendly environment and receive input for improvement from field experts.
Attendees have the opportunity to establish new contacts within the Nordic
region and enhance their communication skills for presenting their research.

The NWPT consists of 7 technical sessions. The sessions welcome 21 regular
presentations presenting recent results and work-in-progress in areas program-
ming analysis, verification, language development, semantics of programming
languages, programming language design and programming methodology, for-
mal specification of programs, program verification, tools for program veri-
fication and construction, program transformation and refinement, real-time,
hybrid/cyber-physical systems modeling and verification, models of concur-
rency and distributed computing, model checking, model-based testing.

The program also features three invited keynote talks by João Saraiva, Uni-
versity of Minho and HASLab / INESC TEC, Portugal titled Energy Efficiency
in Programming Languages, Sam Staton, University of Oxford, UK titled Pro-
gramming theory meets statistical modelling, and Martin Berger, University
of Sussex & Montanarius Ltd, UK titled Towards GPU-accelerated automated
reasoning.

Program Committee

We also thanks the work of the programming committee, consisting of: Al-
ceste Scalas, Antonis Achilleos, Antti Valmari, Chad Nester, Danny Bøgsted
Poulsen, Dylan McDermott, Fabrizio Montesi, H̊akon Robbestad Gylterud,
Jaakko Järvi, Johannes Borgström, Keijo Heljanko, Magnus Madsen, Mag-
nus Myreen, Marina Waldén, Marjan Sirjani, Martin Elsman, Martin Steffen,
Mikhail Barash, Morten Rhiger, Niccolò Veltri, Patrick Bahr, Philipp Ruem-
mer, Roberto Guanciale, Sandro Stucki, Thomas T. Hildebrandt, Violet Ka I
Pun, Volker Stolz, Wojciech Mostowski.

2

Organisation

We would like to thank the organisers of the workshop:

• Michael Kirkedal Thomsen, University of Copenhagen and University of
Oslo

• Maja Hanne Kirkeby, Roskilde University

• Jens Classen, Roskilde University

• Joachim Tilsted Kristensen, University of Oslo

• Matilde Mouritsen Broløs, University of Copenhagen

Also a special thanks to Mikkel Gorm Kæreg̊ard Jørgensen and Björg
Birkholm Magnúsdóttir from University of Copenhagen for invaluable support
in the planning and execution of the workshop.

Support

The organisation behind NWPT thanks the following for support of NWPT:

Carlsberg Foundation, grant CF24-0923,
to help cover catering during the work-
shop and expected for the invited speak-
ers.

PROSA, Danish union for IT-professionals,
for support of publicity and the closing
event.

University of Copenhagen supports NWPT’24
with location and organisation.

Roskilde University supports NWPT’24
with organisation.

Contents

Preface 2
Program Committee . 2

Contents 4

Invited Keynotes 6
• João Saraiva; Energy Efficiency in Programming Languages . . . 7
• Sam Staton; Programming theory meets statistical modelling . . . 8
• Martin Berger; Towards GPU-accelerated automated reasoning . 9

Extended Abstracts 10
• Duc Anh Nguyen, Philipp Rümmer and Wang Yi; Verification of

Data-flow Networks Using the KeY Theorem Prover 11
• Thomas Baar and Volker Stolz; Finding Inductive Invariants Fast

- A Support Technique for Deductive Software Verification . . . 14
• Florian Furbach, Alceste Scalas, Roland Kuhn, Emilio Tuosto

and Hernan Melgratti; Compositional Design and Verification
of Swarm Protocols . 17

• Samuel Grahn and Elli Anastasiadi; Modeling systems via register
machines for the verification of weak memory models 21

• Haining Tong and Keijo Heljanko; GPU Consistency Analysis with
Dartagnan . 24

• Behnam Khodabandeloo, Chengzi Huang, Morteza Mohaqeqi, Su-
sanne Graf and Wang Yi; Buffer Overflow and Deadlock Detec-
tion for Timed Kahn Process Networks 28

• Chad Nester and Niels Voorneveld; On the Operational Semantics
of the Free Cornering with Protocol Choice 31

• Andreas Brandhøj, Dat Dieu, Kasper Vesteraa, Danny Poulsen,
René Hansen and Kim Larsen; DropShadow: Hypercontracts in
Go . 35

• Till Hofmann and Jens Classen; Strategy Synthesis for First-Order
Agent Programs over Finite Traces 39

• Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon
Oddershede Gregersen, Joseph Tassarotti and Lars Birkedal;
Approximate Relational Reasoning for Higher-Order Probabilis-
tic Programs . 43

• Stian Øverby and Joachim Tilsted Kristensen; Probably: A pro-
gramming language with stochastic let-bindings 48

4

• Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Zwart, Alejan-
dro Aguirre and Lars Birkedal; Modelling a Probabilistic Pro-
gramming Language in Clocked Cubical Type Theory 55

• Nikolaj Kristensen, Benjamin Bennetzen, Daniel Kleist, Peter Stef-
fensen, Emilie Steinmann and Loke Walsted; A Type System to
Ensure Non-interference in ReScript 59

• Ksenija Kivojenko, Edwin Smagin, Ian Erik Varatalu and Juhan
Ernits; Towards text extraction learning with regular expres-
sions extended with complement, intersection and lookarounds 63

• Nikolaj Kristensen, Benjamin Bennetzen, Loke Walsted, Peter Stef-
fensen, Emilie Steinmann and Daniel Kleist; Cost Analysis for
Import and Export Using an Abstract Machine 67

• Fritz Henglein, Changjun Li and Mikkel Kragh Mathiesen; Simple
Worst-Case Optimal Joins . 71

• Timmie Lagermann, Kristina Carter, Su Ho and Maja Kirkeby;
UI Test Automation Framework for Energy Analysis: Exploring
Energy Compositionality of Actions 76

• Joel Nyholm, Wojciech Mostowski and Christoph Reichenbach;
Bayesian Energy Profiler for Java 79

• Christian Kalhauge; Input Reduction Revisited 82
• Torben Ægidius Mogensen; A Simple Method for Inverting Tail-

Recursive Functions . 86
• Joachim Kristensen and Matthias Gissurarson; Saving memory by

consolidating fragmented lists 90

Invited Keynotes

6

João Saraiva; Energy Efficiency in Programming
Languages

Affiliation

University of Minho and HASLab / INESC TEC, Portugal

Abstract

In this talk I will compare a large set of programming languages regarding their
energy efficiency. We have taken 19 solutions to well defined programming
problems, expressed in (up to) 27 programming languages, from well know
repositories such as the Computer Language Benchmark Game and Rosetta
Code.

In our research, my group built a framework to automatically, and system-
atically, run, measure and compare the efficiency of such solutions. Ultimately,
it is based on such comparison that we propose a serious of efficiency rankings,
based on multiple criteria.

Our results show interesting findings, such as, slower/faster languages con-
suming less/more energy, and how memory usage influences energy consump-
tion. We also show how to use our results to provide software engineers support
to decide which language to use when energy efficiency is a concern.

In this talk I will also present our most recent results on leveraging power
caps to save energy consumption across programming languages.

Biography

João Saraiva is an Associate Professor at the Department of de Informatics,
University of Minho, Braga, Portugal, and a researcher member of HASLab/I-
NESC TEC. He obtained a MSc degree from University do Minho in 1993 and
a Ph.D. degree in Computer Science from Utrecht University in 1999. His
main research contributions have been in the field of programming language
design and implementation, program analysis and transformation, functional
programming, and green software. He has experience in participating and co-
ordinating research projects in his research areas, both at national level with
projects funded by FCT (projects: PURe, IVY, AMADEUS, CROSS, SSaaPP,
AutoSeer, FATBIT, and GreenSwLab) and at international level with projects
funded by EPSRC (UK), FLAD/NSF (USA) and by the European Union.

João Saraiva is one of the founders of the successful series of summer
schools on Generative and Transformational Techniques in Software Engineer-
ing (GTTSE), which he co-organized in 2005, 2007, 2009, 2011, and 2015 (vol-
umes 4143, 5235, 6491, 7680 and 10223 of LNCS - Tutorial by Springer-Verlag)
in Braga. He was the organizing chair of ETAPS’07, The European Joint Con-
ferences on Theory and Practice of Software, organized in Braga in 2007, and
the worksho co-chair of ICSE’24 held in Lisbon.

Sam Staton; Programming theory meets statistical
modelling

Affiliation

University of Oxford, UK

Abstract

I will discuss the idea that concepts from programming theory have a role
to play in statistical modelling. Indeed they are already playing this role to
some extent, but in different guises. These concepts include abstract types
and lazy data structures, as well as more theoretical ideas such as effect grad-
ings, monoidal indeterminates and sheaf categories. So I will present some
opportunities for using programming theory to inform and formalize the ab-
stract structure of statistics and probability, including some recent and ongoing
results from myself and collaborators. I won’t assume much familiarity.

Biography

Sam is a professor of Computer Science in Oxford. He has previously worked
in Nijmegen, Paris and Cambridge. The talk will be based on work funded
by the ERC grant ”BLAST: Better Languages for Statistics” and the ARIA
Project ”Employing categorical probability towards safe AI”.

Martin Berger; Towards GPU-accelerated automated
reasoning

Affiliation

University of Sussex & Montanarius Ltd, UK

Abstract

Graphics Processing Units (GPUs) are the work-horses of high-performance
computing. The acceleration they provide to applications compatible with
their programming paradigm can surpass CPU performance by several orders
of magnitude, as notably evidenced by the advancements in deep learning.
A significant spectrum of applications, especially within automated reason-
ing—like SAT/SMT solvers—has yet to reap the benefits of GPU acceleration.
In this talk we discuss recent work that successfully implemented program syn-
thesis on GPUs and used it to accelerate learning of logical specifications from
examples. We conclude by mapping out a research programme to move more
formal verification workloads to GPUs.

Biography

Martin Berger did his PhD in formal models for distributed systems at Imperial
College. He’s currently an associate professor in the Department of Informatics
at the University of Sussex. He’s also working as a verification consultant for
the microprocessor industry, and is one of the maintainers of the official RISC-V
instruction set architecture (https://github.com/riscv/sail-riscv). His
research interests include: logic and verification, typing systems, process cal-
culus, meta-programming, JIT compiler.

https://github.com/riscv/sail-riscv

Extended Abstracts

10

Verification of Data-flow Networks Using the KeY Theorem

Prover

Duc Anh Nguyen1, Philipp Rümmer1,2, and Wang Yi1

1 Uppsala University, Uppsala, Sweden
2 University of Regensburg, Germany

Abstract

We present a contract-based method to verify the functional correctness of data-flow
networks modeled in MIMOS, a toolchain currently developed in Uppsala. We specify
the functional correctness of a network using local contracts annotated on the network
components, and global contracts on the inputs and outputs of the network. By utilizing
the functional determinism of the model, we can construct automatically a sequential
program that is functionally equivalent to the original network. The KeY theorem prover
then takes the sequential program with the contracts and checks whether the network
conforms to the provided contracts.

1 Introduction

Model-based design paradigms (SDF [6], Lustre [3], Simulink [2]) have gained popularity, espe-
cially in embedded and safety-critical systems because of their ability to guarantee functionality,
timing correctness, and the absence of deadlock. However, as software is getting more complex,
and the industry is moving toward heterogeneous systems, so is the need for a more expressive
model that also considers concurrency and composability while remaining functional and timing
deterministic.

Our recent work on MIMOS [9] attempts to provide a new software design paradigm based
on the Kahn Process Network (KPN) [4], a well-known model of computation for functionally
deterministic networks. This work-in-progress paper considers the problem of verifying the
functional correctness of the process networks modeled under the MIMOS framework. We opt
for a contract-based approach, in which a contract is given to each node, and a global contract is
given for the whole network. We show that the network can be automatically transformed into
a functionally equivalent sequential program; therefore, contract-based tools and techniques for
sequential programs can be used. In our work, each node is implemented in Java; hence, the
KeY theorem prover [1] is used to prove the contract.

2 Sequential transformation

In MIMOS, each node is associated with a step function mapping a fixed number of elements
from input streams to a fixed number of elements in output streams. In this paper, we only
consider acyclic, multiple input, and 1-output networks. Figure 1 shows an example network,
figure 2 shows its corresponding stream functions and figure 3 shows stream functions defined
recursively using step functions. We use upper case (F1) to denote stream functions and lower
case (f1) to denote step functions of each node.

Since data flowing through the network is transformed by step functions along the path,
step functions can be composed, resulting in one step function for the whole network, as shown
in the last equation in figure 3. This function shows how the network transforms inputs into

Verification of Data-flow Networks Using the KeY Theorem Prover Duc Anh, Philipp, and Wang

Figure 1: An example KPN network

O = F4(C1, C2, C3)

C2 = F3(C1)

C1 = F1(I1)

C3 = F2(I2)

Figure 2: System of stream equation of the
network in figure 1

C1 = F1(i1 • I1) = f1(i1) • F1(I1)

C3 = F2(i2 • I2) = f2(i2) • F2(I2)

C2 = F3(c1 • C1) = f3(c1) • F3(C1) = f3(f1(i1)) • F3(C1)

O = F4(c1 • C1, c2 • C2, c3 • C3) = f4(c1, c2, c3) • F4(C1, C2, C3)

= f4(f1(i1), f3(f1(i1)), f2(i2)) • F4(C1, C2, C3)

Figure 3: Recursive definition of stream functions using step functions

outputs. It can be seen from the function definition that if a sequential program invokes the
nodes’ step functions in the composition order, it will obtain the same output as the network.
The composition order can be achieved by sorting the node topologically from inputs to outputs.

Each step function is associated with a contract consisting of pre- and post-conditions.
If input values satisfy the pre-conditions, output values have to satisfy the post-conditions.
The system-level step function, composed of nodes’ step functions, is associated with a global
contract, also in the form of pre- and post-conditions. The pre-conditions express assumptions
about the values of the network inputs, and the post-conditions specify the expected values of
the network outputs.

3 Implementation detail

In the MIMOS tool, each node’s step function is given as a Java method. Therefore, we decided
to use the Java Modeling Language (JML) [5] to specify contracts for each node. A top-level
Java method is automatically generated, which invokes all step functions in the correct order.
This method represents one iteration of the whole network. The global contract of the network
is specified as a JML contract for this top-level method. All contracts are provided manually by
the user. Finally, we feed all methods and specifications to the KeY tool, which then attempts
to verify all contracts automatically. In our experiments with smaller case studies in MIMOS,
verification was usually completed within a couple of seconds.

4 Conclusion and Future Works

In this paper, we applied a contract-based approach to verify the functional contracts of MIMOS
networks. The contracts comprise pre- and post-conditions and are verified automatically using

2

Verification of Data-flow Networks Using the KeY Theorem Prover Duc Anh, Philipp, and Wang

the KeY theorem prover.
In related work, verification of another extension of KPNs, Dataflow Process Networks

(DPNs), has been studied in [8], in which a contract-based approach is presented. Networks,
together with contracts and scheduling information, are encoded in Boogie language and verified
using the SPIN model checker. In [7], Lin et al. verifies networks of reactors by converting the
network, implemented in a subset of C, to an SMT model and then use Z3 SMT solver to solve
it.

As an avenue of future work, we will consider networks with multiple outputs and networks
with loops. Since MIMOS models are inherently asynchronous, contracts over multiple output
streams need to utilize timing information to check which outputs’ values are observed at the
same time. To verify networks with loops, loop invariants are needed to help prove the entire
network.

References

[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias
Ulbrich, editors. Deductive Software Verification - The KeY Book - From Theory to Practice, volume
10001 of Lecture Notes in Computer Science. Springer, 2016.

[2] Simulink Documentation. Simulation and model-based design, 2020.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming
language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[4] Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP Congress, 1974.

[5] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of jml: a behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, May 2006.

[6] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE, 75(9):1235–
1245, 1987.

[7] Shaokai Lin, Yatin A. Manerkar, Marten Lohstroh, Elizabeth Polgreen, Sheng-Jung Yu, Chadlia
Jerad, Edward A. Lee, and Sanjit A. Seshia. Towards building verifiable cps using lingua franca.
ACM Trans. Embed. Comput. Syst., 22(5s), September 2023.

[8] Jonatan Wiik, Johan Ersfolk, and Marina Waldén. A contract-based approach to scheduling and
verification of dynamic dataflow networks. In 2018 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE), pages 1–10, 2018.

[9] Wang Yi, Morteza Mohaqeqi, and Susanne Graf. Mimos: A deterministic model for the design
and update of real-time systems. In Maurice H. ter Beek and Marjan Sirjani, editors, Coordination
Models and Languages, pages 17–34, Cham, 2022. Springer Nature Switzerland.

3

Finding Inductive Invariants Fastly - A Support Technique

for Deductive Software Verification

Thomas Baar1 and Volker Stolz2

1 Hochschule für Technik und Wirtschaft Berlin, Germany
thomas.baar@htw-berlin.de

2 Western Norway University of Applied Sciences
volker.stolz@hvl.no

1 Motivation

We consider the case of formally verifying the implementation of a function being correct with
respect to an annotated contract consisting of pre-/post-condition. When using tools like KeY
[1] or Verifast [4], the most challenging task for the user is to provide the right code annotations
allowing the verification tool to verify the correctness of the function’s implementation auto-
matically. Probably, the most widely known annotation to be provided by the user are loop
invariants, which can be challenging to find [2].

We have recently experienced this pain when implementing the Hotel-Room-Locking pro-
tocol (a case study for Alloy [3]) in C and verifying this C-code using Verifast. The protocol
prescribes actions such as checkin, checkout, enterRoom, etc., and how they change the current
system state (e.g., validity of keys, occupation status of room). The correctness property to
be shown is that whenever a guest is able to enter a room with his key, then this room must
be occupied by the very same guest. Unfortunately, the correctness property cannot be proven
straightforwardly, since it is not an inductive property.

2 Approach

In order to illustrate the burden of the verification engineer to provide the right annotations,
we define a very simple but nethertheless representable example system: Our system consists
of two integer variables x and y and two actions changeX() and changeY(). Initially, both
variables are set to 0. The action changeX() is implemented as follows:

changeX() { if (y % 2 == 0){x = x + 2;} else { x = x + 1; } }
Whenever changeX() is invoked, the value of variable x is increased. The difference of the

increase has value 2 when the value of (the other) variable y is even, and value 1 otherwise.
The other action changeY() is implemented fully analogously: the value of y is increased

by 1 or 2, depending on whether x is even or not.
Note that variable x/y changes its value only in changeX()/changeY(), respectively. We

further observe that the value of x remains even, as long a value of y is even. If changeX() is
invoked in a situation in which y is odd, then the value of x changes from even to odd and vice
versa.

Fig. 1a shows the system behaviour and marks the reachable states when the system starts
in (0,0). The figure illustrates that each action when invoked in a reachable state increases
the variable x/y always by 2. In contrast, Fig. 1b shows the system behaviour for all possible
states, not just the reachable. Here, also smaller steps are possible, e.g. when changeX() is
started in state (2,1).

Finding Inductive Invariants Fastly Baar and Stolz

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(a) Reachable states

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(b) All states

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(c) Property

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(d) Invariant

Figure 1: Analysis of the system

It is easy to see that all reachable states satisfy the property P : x % 2 == 0 (x is even).
However, this property P alone is not provable, because P is not an inductive property and not
obeyed by implementation changeX(). In Fig. 1c we see for example that changeX() started
in state (2,3) results in state (3,3) which does not satisfy P .

To overcome this problem, an invariant INV , which is stronger as the original property P ,
is verified. In our case, the invariant is defined as INV : (x % 2 == 0 && y % 2 == 0). As
Fig. 1d suggests, this INV is inductive indeed, so that INV can easily be proven by Verifast.

To sum up: Each system has a set of reachable states Sreach and this set is by definition
inductive: When an action is invoked in any state from this set, it results in a state from this
set too (otherwise, this post state would not be reachable).

Moreover, we have a property P to be verified and we assume that this property holds
in each reachable state. Thus, the set of states satisfying P is a superset of reachable states
(Sreach ⊆ SP) but this set might not be inductive: There might be a state s ∈ SP , so that an
action started in s would yield to a state outside of SP . To address this issue, the verification
engineer has to propose an invariant INV , which is

� correct (Sreach ⊆ SINV), and

� stronger as P (SINV ⊆ SP), and

� inductive (SINV cannot be left by any action)

2

Finding Inductive Invariants Fastly Baar and Stolz

3 User Support to Evaluate Invariant Candidates

The verification engineer could be effectively supported in providing the right invariant when
a tool with the following features would be available:

� generate a subset of all possible system states (no matter whether reachable or not) of
managable size called U

� mark within U the subset of reachable states

� for a given property P

– mark all states within U satisfying P

– analyze whether the set for P is inductive or not

Such a tool could give early feedback, whether an invariant proposed by the user is in-
deed correct and inductive for the (subset of all possible) states in U . The tool might also
assist the user with a visualization similar to the diagrams we provided above for the tiny
system changeX()/changeY(). However, visualization is usually not that straightforward as
in this example with a two-dimensional state space of integers, which can be nicely drawn is
a two-dimensional grid. However, even if the state space has a much higher dimension, visu-
alization might still be helpful and manageable when the user considers a projection to the
low-dimensional state space.

References

[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, and Mattias Ulbrich, editors.
Deductive Software Verification: Future Perspectives - Reflections on the Occasion of 20 Years of
KeY, volume 12345 of Lecture Notes in Computer Science. Springer, 2020.

[2] Dirk Beyer and Martin Spiessl. LIV: loop-invariant validation using straight-line programs. In 38th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2023, Luxembourg,
September 11-15, 2023, pages 2074–2077. IEEE, 2023.

[3] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. Publisher, 2012. MIT
Press.

[4] Bart Jacobs, Jan Smans, and Frank Piessens. The VeriFast Program Verifier: A Tutorial. Available
from https://github.com/verifast/tutorial.

3

Compositional Design and Verification
of Swarm Protocols

Florian Furbach1, Alceste Scalas1, Roland Kuhn2, Emilio Tuosto3, and
Hernán Melgratti4

1 Technical University of Denmark, Denmark
2 Actyx AG, Germany

3 Gran Sasso Science Institute, Italy
4 University of Buenos Aires, Argentina

Abstract

Swarm protocols are a recently introduced formalism for specifying and verifying the
intended behaviour of a distributed ensemble of agents, used e.g. for factory automation.
Unfortunately, existing design and verification techniques for swarm protocols are not
compositional. We explain the problem and present our ongoing work that addresses it.

1 Background: Swarm Protocols

Swarm protocols [7] formalise the intended behaviour of distributed interacting agents, referred
to as machines. A swarm operates under a local-first paradigm [6, 5], enabling each machine
to make progress independently without requiring up-to-date global information or an active
connection. This decentralized design enhances the availability and efficiency of swarm systems.
Swarm protocols are implemented in the Open Source Actyx toolkit [1] for factory automation.

Machines in a swarm communicate by emitting events which propagate asynchronously
throughout the swarm. Each machine M subscribes only to certain types of events and ignores
others. During execution, M maintains a local log lM of received events, updating its state
when new events alter the log. These events have a globally agreed total order [2], often
defined by timestamps. Each machine in a swarm plays a specific role. Akin to multiparty
session types [3, 4], the global behaviour of a swarm is specified as a swarm protocol G , which
describes the interactions between different roles.

Consider e.g. the Warehouse protocol in Figure 1. The transition “request@T⟨partID⟩”
means: a machine playing the transport role (T) can perform a request operation, emitting an
event of type partID; then, a forklift (FL) gets the part at a certain position, and a Transport
delivers the part. In between requests, a door (D) may close emitting the closing time.

Each machine implements a role-specific projection of G that subscribes to some events.
Figure 2 shows a projection of the Warehouse protocol on role D: here, D subscribes to the

0 2

1

3

req
ue

st@
T⟨p

art
ID⟩ get@FL⟨pos⟩

deliver@T⟨part⟩

close@D⟨time⟩

Figure 1: The swarm protocol Warehouse.

0 1

3

time!

part?

partID?

time?

Figure 2: Projection of Warehouse on role D.

Compositional Design and Verification of Swarm Protocols Furbach, Scalas, Kuhn, Tuosto, and Melgratti

events of type partID and part (emitted by T), but does not subscribe to pos (emitted by
FL). The projection may also emit the time event (denoted “time!”) and read it back from the
log (time?). A possible run of a swarm implementing the Warehouse protocol is:

1. A machine with the Transport role performs a request and emits the event PartID1 .

2. This event propagates to the local log of the ForkLift machines.

3. Thus, a ForkLift machine transitions to state 1, where it gets the part and emits PosX .

4. Concurrently, a second forklift also gets the part and emits its position PosY .

5. The Transport machine receives the event PosX and delivers Part1 .

6. A Door receives these events in its log, lD = PartID1 .PosX .PosY .Part1 , and then closes,
emitting the event 8PM (of type time).

7. A Transport, unaware of the event 8PM , requests another part by emitting PartID2 .

Eventually, all events propagate throughout the swarm, and all machines reach the same
log, e.g., l = PartID1 .PosX .PosY .Part1 .8PM .PartID2 . Observe that this example log l shows
a case where events PosY and PartID2 are emitted too late and thus invalidated: According
to the Warehouse protocol in Figure 1, PosY conflicts with the event PosX that comes earlier
in the log. Likewise, PartID2 is invalid due to the earlier 8PM . It’s important to note that
this swarm model assumes actions are reversible. However, in practical applications, certain
operations may be irreversible, which the implementation must account for.

2 Compositional Design of Swarm Protocols
The current theory [7] and implementation [1] of swarm protocols only supports monolithic
swarm design: i.e., it does not support developing a large and complex factory automation
protocol by combining modular, reusable swarm components that are developed and verified
independently. To address this issue, we introduce a theory of swarm composition, based on
interfacing roles: i.e., given two swarm protocols G1 and G2 with suitable interfacing roles, we
define the composition operation G1 ||G2 ; also, given two swarms (i.e., ensembles of machines)
S1 and S2 implemented by projecting G1 and G2 , we define the swarm composition S1 ||S2.

E.g., consider Figure 3: it shows a Factory swarm protocol where a Transport requests
and delivers a part, which is then utilized by a Robot to build a car (emitting an event of
type car). The Transport role can act as an interface with the Warehouse protocol in Fig-
ure 1, allowing a synchronising composed behaviour: intuitively, the composed swarm protocol
Warehouse ||Factory can either advance within one sub-protocol, or execute a Transport in-
terface operation that spans both protocols. Figure 4 shows the swarm protocol arising from
such a composition. Note that the operations build and close are concurrent.

3 Compositional Verification of Swarm Correctness
A key correctness property for a swarm of machines S projected from a swarm protocol G is
eventual fidelity : once every event has been propagated to every machine in S, all machines
must reach a consensus on which events are valid. This means they must conform to the

0 1 2 3
request@T⟨partID⟩ deliver@T⟨part⟩ build@R⟨car⟩

Figure 3: A Factory protocol that can interface with the Warehouse using the Transport role.

2

Compositional Design and Verification of Swarm Protocols Furbach, Scalas, Kuhn, Tuosto, and Melgratti

0 || 0 1 || 1

3 || 0

2 || 1 0 || 2

0 || 3

3 || 2

3 || 3
request@T⟨partID⟩ get@FL⟨pos⟩ deliver@T⟨part⟩

close@D⟨time⟩

bui
ld@

R⟨car
⟩

close@D⟨time⟩

close@D⟨time⟩

bui
ld@

R⟨car
⟩

Figure 4: The swarm protocol arising from the composition Warehouse ||Factory .

same execution of the swarm protocol G . Assuming every role except D subscribes to every
type, the example is eventually faithful: All machines conform to an execution with the events
PartID1 .PosX .Part1 .8PM , even though D does not subscribe to PosX . Existing work [7]
ensures eventual fidelity by verifying a restrictive syntactic property of G called well-formedness.
Unfortunately, their notion of well-formedness is not compositional: i.e., given two well-formed
swarm protocols G1 and G2 , their composition G1 ||G2 may not be well-formed and must be
verified “from scratch.” Therefore, we do not use it in our approach. Moreover, the machines
that implement G1 may need to be manually adjusted by subscribing to many events from G2

(and vice versa) to behave correctly in the composed swarm. These limitations make verification
inefficient, and hamper the reusability of machine implementations. To solve these issues, we
adopt a two-pronged approach, by introducing:

1. A new, compositional well-formedness property for a swarm protocol G . Technically, the
new property is defined w.r.t. a set of subscriptions, and identifies a (typically small)
set of branching event types that a role has to subscribe to when projected from G . An
event type is branching, if there is a choice between it and other outgoing events. In
Figure 4, partID and time are branching. Type car is not branching since there is no
choice between car and time in state 0 || 2 , only their order changes.

2. A new branch tracking functionality in the semantics of each machine. The functionality
works as follows: every emitted event contains a pointer to the last branching event that
preceded it; a machine only accepts an event if it points to the expected branching event.

These two techniques require machines to only subscribe to a few event types, thus keeping
the machines simple and the swarm efficient. Together, the compositional well-formedness and
branch tracking guarantee that a swarm behaves correctly, meaning all machines eventually
agree on which events are valid. This is outlined in Theorem 1 below.

Theorem 1 (Outline). Let G be a compositional well-formed swarm protocol. Let S be a swarm
of branch-tracking machines that implements G. Then, S enjoys eventual fidelity to G.

Moreover, our novel notions of swarm composition, compositional well-formedness, and
branch tracking enable compositional verification. We only have to verify that the initial swarm
protocols are well-formed. Any compositions are guaranteed to remain well-formed. By ver-
ifying that the initial swarm protocols are well-formed, we ensure the eventual fidelity of all
swarm compositions, as outlined in Theorem 2 below.

Theorem 2 (Outline). Let G1 and G2 be compositional well-formed swarm protocols. Let S1

and S2 be swarms of branch-tracking machines that implement G1 and G2 , respectively. Then:

1. The swarm protocol composition G1 ||G2 is compositional well-formed, and

2. The swarm composition A(S1,G2) || A(S2,G1) enjoys eventual fidelity to G1 ||G2 .

3

Compositional Design and Verification of Swarm Protocols Furbach, Scalas, Kuhn, Tuosto, and Melgratti

In the outline of Theorem 2 above, A(S1,G2) is an adaptation that subscribes some machines
in S1 to some branching events (identified by our compositional well-formedness property) in
G2 . This is necessary because the machines in S1 may need to receive such events to avoid
desynchronising from S2. A symmetric adaptation is applied to S2 using G1 . For instance, a
Robot needs to subscribe to time to determine whether the doors closed before a request,
which would invalidate it. This automatic adaptation allows for reusing machine implementa-
tions, and minimises communication across composed swarms.

4 Ongoing and Future Work
We are currently finalising the proofs of Theorem 1 and Theorem 2 outlined above. Moreover,
we are implementing our new definitions of swarm protocol well-formedness and machine adap-
tation by extending the Actyx toolkit [1]. We plan to apply our compositional swarm design
and verification results, and their implementation, to industrial factory automation scenarios.

5 Acknowledgments
This research was partly supported by the Horizon Europe grant 101093006 (TaRDIS).

References
[1] Actyx AG. Actyx developer website. https://developer.actyx.com, 2024. [Online; accessed on

29 October 2024].
[2] Sebastian Burckhardt. Principles of eventual consistency. Found. Trends Program. Lang.,

1(1–2):1–150, oct 2014.
[3] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In

Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium on principles of programming
languages, pages 273–284, 2008.

[4] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. Jour-
nal of the ACM (JACM), 63(1):1–67, 2016.

[5] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-first
software: You own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, page 154–178, New York, NY, USA, 2019. Association for Computing
Machinery.

[6] Roland Kuhn. Local-first cooperation: Autonomy at the edge, secured by crypto, 100% avail-
able. https://www.infoq.com/articles/local-first-cooperation/, 2021. [Online; accessed on
29 October 2024].

[7] Roland Kuhn, Hernán C. Melgratti, and Emilio Tuosto. Behavioural types for local-first software.
In Karim Ali and Guido Salvaneschi, editors, 37th European Conference on Object-Oriented Pro-
gramming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States, volume 263 of
LIPIcs, pages 15:1–15:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

4

Modeling systems via register machines for the verification

of weak memory models

Elli Anastasiadi1,2 and Samuel Grahn1

1 Department of Information Technology, Uppsala University, Sweden
2 Department of Computer Science, Aalborg University, Denmark

elli.anastasiadi@it.uu.se, anastasiadi.elli0@gmail.com, samuel.grahn@it.uu.se

Abstract

Register machines can be verified against weak memory models that might be undecid-
able in the general case. Here we demonstrate how to model system features via register
machines so that we enable their verification.

Hardware optimization has been an active area of research for many decades. However, there
is an inherent tradeoff between performance and simplicity (or predictability) of a system. To
optimize memory accesses, weak memory models have become the norm for multicore processors.
In order to avoid the long wait for data from memory, each core has its own local cache. This
cache is then, from a programmers’ point of view, nondeterministically saved into memory. This
means that when a thread reads from a memory location, it does not necessarily read the latest
value written to it by another thread, as the effect of that cache may not yet have propagated.
There are several versions of weak memory models that provide different guarantees to the
programmer. One of the most fundamental computational problems for a given consistency
model CM is consistency checking. Consistency checking comes in two flavors: testing and
verification [1, 2, 6, 7]. In this abstract we focus on the verification problem, in which we
are given an implementation and asked to check whether all executions of the implementation
satisfy CM. In an implementation, the number of allowed runs is usually infinite, and the runs
themselves can be infinite. Moreover, there is no priori bound as to which finite restriction
of them one has to consider in order to guarantee that all runs are safe. This has led to a
plethora of hardness and undecidability results [2, 3], which indicate that in order to tackle
the verification problem one needs to restrict the expressiveness of the formalism describing an
implementation.

In our case we have picked to work with the classical example of a register machine model to
describe the underlying implementation. The model is an extended finite-state machine with a
finite set of registers that store data values from an unbounded domain. The machine interacts
with a finite set of external threads through write (where the register machine inputs a value
to a register) operations and read (outputting a stored value) operations performed on a finite
set of variables. Furthermore, the machine can perform internal transitions to transfer data
between registers. The model is conceptually simple, providing a concise framework to state our
complexity results. At the same time, it is sufficiently robust to model relevant features needed
to model cache protocols or distributed systems, such as rendezvous communication, broad-
casting fences, and store buffers [3, 4]. Moreover, recent work use automata-like formalisms for
learning models of implementations and detecting bugs [5]. Such work enhance the relevance
of register machines for verifying program behaviors. In our approach, a register machine is
an intermediate representation of an actual hardware architecture or a protocol for handling
memory access, which we can verify against several weak memory semantics. The register ma-
chine, therefore, captures precisely what kind of memory accesses are offered to a given program
and what values the architecture would return for those accesses. In this abstract we focus on
demonstrating how to capture common system and programming language characteristics in

Modeling via Register machines Anastasiadi, Grahn

the setting of register machines. Specifically, we demonstrate how we model buffers and fences.
However, in a similar way we can capture vector clocks.

1 Register machines

Assume a set Θ of threads, a set V of variables, and a set Regs of registers. We assume that
the variables and the registers range over a (potentially infinite) set D of data values with the
particular value 0 ∈ D. A register machine (or simply a machine) M is a tuple ⟨Q, qinit,∆⟩
where Q is the finite set of states, qinit ∈ Q is the initial state, and ∆ is the finite set of
transitions. A transition is a triple of the form ⟨q, o, q′⟩ where q, q′ ∈ Q are states, and o is an
operation. The operation o can be in one of the following three forms:

� (W, θ, x, a) receives the value of the variable x from θ and writes (stores) the value in
register a. The environment selects the written value (the program running on M).

� (R, θ, x, a) reads of value of the variable x from the register a and delivers the stored value
to θ.

� a := a′ copies the value stored in the register a′ to the register a.

2 Modeling buffers and fences

In modern computers, written data is not immediately visible to other threads, but rather are
placed in cache. This cache is then eventually – nondeterministically from the view of the
programmer – copied back into memory.
Buffers: A buffer consists of a sequence of messages. The contents of each message, as well as
the number of buffers, depend on the particulars of the modeled system. For example, in some
setups buffers store the messages that are pending to be read by a process, while in others the
information concerns the writes that have taken place in some part of the architecture.

To demonstrate how to model such a buffer we focus on the second case, and specifically in
the x86 architecture. There each thread (or process) has its own store buffer, whose messages
are information about writes. Whenever a thread writes a value, a message is appended to the
buffer containing the neccessary information about this write. Whenever a thread tries to read
from memory, it first looks in its write buffer and returns the value of the latest write to that
address. If no such write message exists in the buffer, it gets the value from memory. The effect
of the first message in a buffer can be applied to memory nondeterministically.

One important detail about these buffers is that they are bounded in practice, e.g. the cache
of a computer is finite. This means we can include information about buffer contents in each
state, while still keeping a finite (albeit exponentially larger) state space. Once the contents of
the buffer are part of the state, one can add the transitions that match the modeled system.

As a simple example, we will construct a system with two threads, two variables and two
store buffers, each of size 2. For each variable x there is a register xmem representing the value
in memory. A state in this machine is a set

{
Bθ, Bϕ

}
, consisting only of the buffers, each

of which is a queue of variable names. Each buffer Bi has two registers Bi
1, B

i
2, one for each

message slot (due to the size bound of 2). For each variable, each state has read transitions to
itself that reads from the appropriate register. For instance, if the buffer Bθ contains a message
x at index i, there is a self-loop transition with label

(
R, θ, x,Bθ

i

)
. Similarly, if there is no

such message, there is a transition (R, θ, x, xmem). Assuming the store buffer of thread θ has

2

Modeling via Register machines Anastasiadi, Grahn

an empty message slot with index i, we allow θ to perform a write. This write is a transition{
Bθ, Bϕ

} (
W, θ, x,Bθ

i

) {
Bθ′, Bϕ

}
, where Bθ′ is the result of appending x to Bθ. The final type

of transition is the handling of a message. If there is a message x in the front of a buffer Bθ

(i.e. at index 1), we add a sequence of transitions, starting from the initial state {Bθ, Bϕ}, to
an auxilliary state q, into a final state

{
Bθ′, Bϕ

}
, where Bθ′ is Bθ but with the first message

removed and everything else shifted forwards one step. The first transition writes the data in
the first write message to memory, through a copy xmem := Bθ

1 . The next transition moves the
contents of the second message to the registers of the first; through Bθ

1 := Bθ
2 . In the case of a

longer buffer, there would be a longer chain of such shifts.
Fences: A fence is a construct that synchronizes threads by ensuring any message buffers are
empty. This can be modeled from a state q, by only allowing message handling transitions from
q, unless each buffer in q is empty. In such a case, we have a dummy transition a := a into a
new state q′, with empty buffers, corresponding to having passed through the fence.

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. Optimal
stateless model checking under the release-acquire semantics. Proc. ACM Program. Lang.,
2(OOPSLA):135:1–135:29, 2018.

[2] Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. Model-checking of correctness
conditions for concurrent objects. Inf. Comput., 160(1-2):167–188, 2000.

[3] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On verifying causal
consistency. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 626–638. ACM, 2017.

[4] Giorgio Delzanno. Constraint-based verification of parameterized cache coherence protocols.
Formal Methods Syst. Des., 23(3):257–301, 2003.

[5] Simon Dierl, Paul Fiterau-Brostean, Falk Howar, Bengt Jonsson, Konstantinos Sagonas, and
Fredrik T̊aquist. Scalable tree-based register automata learning. In Bernd Finkbeiner and
Laura Kovács, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 87–108, Cham, 2024. Springer Nature Switzerland.

[6] Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM J. Comput.,
26(4):1208–1244, 1997.

[7] Weiyu Luo and Brian Demsky. C11tester: a race detector for C/C++ atomics. In Tim
Sherwood, Emery D. Berger, and Christos Kozyrakis, editors, ASPLOS ’21: 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, Virtual Event, USA, April 19-23, 2021, pages 630–646. ACM, 2021.

3

GPU Consistency Analysis with Dartagnan

Haining Tong1 and Keijo Heljanko12

1 University of Helsinki, Helsinki, Finland
haining.tong@helsinki.fi

keijo.heljanko@helsinki.fi
2 Helsinki Institute for Information Technology, Helsinki, Finland.

1 Introduction

In recent years, significant efforts have been made to formalize GPU consistency mod-
els [3, 12, 11]. These models specify how concurrent programs behave on GPU hardware and
thus help users write programs that are free of concurrency bugs. Some of the efforts have
introduced prototype tools to assist researchers and developers in analyzing the correctness of
GPU programs with respect to these models. However, these tools are typically tightly coupled
with a specific model, making it difficult to compare consistency features between different
models. Additionally, since these tools are typically built on top of the Alloy framework [10],
they are limited to straight-line code in pseudo-assembly without control flow instructions and
struggle with scalability, particularly for programs with more than a few instructions.

In this abstract, we primarily discuss our prior work on integrating support for the Nvidia
Ptx [11, 12] and Khronos Vulkan [3] consistency models into Dartagnan1, an open-source
Bounded Model Checking (BMC) tool designed to check state reachability under specific mem-
ory models. The technical details of the approach will be published in an accepted manuscript
to ASPLOS2024 [13], and here we mainly outline the overall approach taken in that paper.
The process involves formalizing GPU consistency models in the domain-specific language
.cat [4, 7, 5], extending it with GPU-specific features, enhancing our Dartagnan to sup-
port the GPU consistency models, and implementing new front-ends for both pseudo-assembly
syntax and a subset of real Spir-V assembly [2]. Additionally, we present a bug discovered in
the original Vulkan consistency model.

2 Consistency Models and Bounded Model Checking

Memory consistency models can be formalised in .cat language [4, 7, 5], the core part of which
is laid out in Figure 1. A consistency model in .cat is defined by tagged memory events (s),
relations over memory events (r), and axioms over the relations (axm). Base event tags (t)
are derived from the type of program instructions e.g., writes W, reads R, fences F, barriers B,
and initial writes I. In addition to base events, new tags (t) can also be derived using union
(s ∪ s), intersection (s ∩ s), and set difference (s \ s). Similarly, relations (r) consists of base
relations(b) e.g., program order po, read-from rf, coherence co; and new relations derived from
them using union (r ∪ r), intersection (r ∩ r), difference (r \ r), relation composition (r; r), and
relation inverse (r−1). Axioms (axm) define the validity of weak behaviors according to the
memory consistency model.

A weak behavior of a concurrent program is defined by the values that threads write to
and read from the shared memory. Formally, a behavior is a tuple (X, rf, co) of executed
events, the read-from relation, and the coherence order relation. A behavior is allowed by a

1https://github.com/hernanponcedeleon/Dat3M

GPU Consistency Analysis with Dartagnan Tong and Heljanko

mm ::= def | axm | mm ∧mm

axm ::= acyclic(r) | irreflexive(r) | empty(r)

def ::= let d := r | let d := s

r ::= b | d | r−1 | r ; r | r ∩ r | r ∪ r | r \ r

b ::= po | rf | co | loc | [t] | t× t | . . .

s ::= t | d | s ∩ s | s ∪ s | s \ s

t ::= I | W | R | F | B | . . .

Figure 1: The .cat language for consistency models [5].

consistency model if it satisfies all axioms of the model, otherwise it is forbidden. The set of
allowed behaviors defines the semantics of the program with respect to the consistency model.
Dartagnan encodes a program’s semantics w.r.t. a memory model as a SAT modulo theories
(SMT) formula, and then uses BMC to detect violations of safety, liveness, or data race freedom
(DRF) [6, 8] as defined by the model.

3 GPU Consistency Analysis

The most naive form of encoding for BMC is using one Boolean variable for each combination
of a relation and an event pair. If the variable is set, then the pair belongs to the relation.
This form generates a large formula and verification does not scale well. For a more compact
encoding, Dartagnan employs static analysis techniques to compute the lower and upper
bounds of the relations [9]. In this section, we introduce the unique features of GPU consistency
models, which differ from those of CPU models, and describe how we incorporate support for
these features.
Memory Scopes. To achieve high parallelism, modern GPUs utilize numerous processing cores
to execute a massive numbers of threads in parallel. However, the latency of global memory
accesses for thread communication tends to be notably high. To address this challenge, scopes
were introduced as a synchronization mechanisms providing ordering guarantees only among a
specific subset of threads. This allows for optimization of synchronization between threads.
Memory Fences and Control Barriers. GPUs offer fine-grained synchronization mecha-
nisms via memory fences and control barriers. GPU memory fences are similar to CPU fences
and can be used to synchronize accesses to shared memory. Control barrier ensures that all
threads within a specified scope reach the barrier before any of them can proceed further.
Address Spaces. Modern GPUs use specialized accelerators with dedicated caches to boost
performance [1]. Compared to generic memory paths, such specialized caches often provide
weaker coherence guarantees. Moreover, the same memory address can be accessed via the
conventional memory path and via a specialized cache. Ptx introduced the notion of proxies
to handle specialized accelerators with non-coherent cache hierarchies [11]. Vulkan uses the
concept of storage classes to represent memory accesses via different cache types.
Cache Control. Both the Ptx and Vulkan models use release-acquire semantics to establish
memory synchronization. However, they choose different strategies for cache control. In Ptx,
the transitive nature of causality makes operations preceding a release pattern from one thread
visible to other threads. Vulkan introduces the notions of availability and visibility to explicitly
define the involvement of weak memory operations into a synchronization.

All static relations are fully computed from the source code of the program. The precise

2

GPU Consistency Analysis with Dartagnan Tong and Heljanko

Relation Precise Computation SMT Encoding

sr
{(e1, e2) ∈ X× X | thread(e1) ∈ scope(e2) ∧ thread(e2) ∈ scope(e1)

(exece1 ∧ exece2)∧ ¬mutExcl(e1, e2) ∧ visibleFrom(thread(e1), thread(e2), scope(e1))}
r ∈ {scta, ssg, swg, ssw} {(e1, e2) ∈ X× X | ¬mutExcl(e1, e2) ∧ ⇔ r(e1, e2)visibleFrom(thread(e1), thread(e2), r)

syncbar {(e1, e2) ∈ B× B | id(e1) = id(e2) ∧ ¬mutExcl(e1, e2)}

Table 1: Precise computation and SMT encoding for static base relations.

computation along with the SMT encodings of these static relations are shown in Table 1.
The bounds for the dynamic relations are provided in Table 2, while their SMT encodings are
detailed in Table 3. Complete models can be found from the Dartagnan repository.

Relation Lower Bound Upper Bound
sync barrier {(e1, e2) ∈ B× B | id(e1) = id(e2) ∧ ¬mutExcl(e1, e2) {(e1, e2) ∈ B× B | ¬mutExcl(e1, e2)

∧ sameCTA(thread(e1), thread(e2))} ∧ sameCTA(thread(e1), thread(e2))}
sync fence ∅ {(e1, e2) ∈ F× F | memOrd(e1) = SC

∧memOrd(e2) = SC ∧ ¬mutExcl(e1, e2)}
vloc

{(e1, e2) ∈ M×M | mustAlias(e1, e2) ∧ {(e1, e2) ∈ M×M | mayAlias(e1, e2) ∧
sameV irtual(e1, e2) ∧ ¬mutExcl(e1, e2)} sameV irtual(e1, e2) ∧ ¬mutExcl(e1, e2)}

Table 2: Lower and upper bounds for dynamic base relations.

∧
e1,e2∈X

(exece1 ∧ exece2 ∧ id(e1) = id(e2)) ⇔ sync barrier(e1, e2)

∧
(e1,e2)∈[F & SC];sr;[F & SC]

((exece1 ∧ exece2) ⇔ (sync fence(e1, e2) ∨ sync fence(e2, e1))

∧ (sync fence(e1, e2) ⇒ clksync fence
e1 < clksync fence

e2))∧
e1,e2∈X

vloc(e1, e2) ⇒ (exece1 ∧ exece2 ∧ addr(e1) = addr(e2))

∧
e1,e2∈X

co(e1, e2) ⇒ (exece1 ∧ exece2 ∧ addr(e1) = addr(e2) ∧ clkcoe1 < clkcoe2)

Table 3: SMT encoding for dynamic base relations. The encoding of co only affects Ptx.

During the validation of the translated models, we identified a bug in the original Vulkan
consistency model. A simple litmus test illustrating this issue is shown in Fig. 2. The orig-
inal model permits both RMW operations to read the same value, which clearly violates
atomicity. This issue arises because the original definition of fr = (rf ∧ −1; asmo)|(([I]; rf) ∧
−1; ((loc; [W])\id)) does not account for the ordering of non-atomic writes. We proposed up-
dating fr to include locord. This fix2 has been reported to the maintainers of theVulkanmodel,
and they have confirmed and accepted our proposed change to the Vulkan specification.

1 P0@sg 0, wg 0, qf 0 | P1@sg 1, wg 0, qf 0 ;
2 st.av.dv.sc0 x, 1 | cbar.acq_rel.dv.semsc0 0 ;
3 cbar.acq_rel.dv.semsc0 0 | rmw.atom.dv.sc0.add r0, x, 1 ;
4 rmw.atom.dv.sc0.add r0 , x, 1 | ;
5 exists
6 (P0:r0 == 1 /\ P1:r0 == 1)

Figure 2: A program showing a bug in the Vulkan model.

2https://github.com/KhronosGroup/Vulkan-MemoryModel/issues/36

3

GPU Consistency Analysis with Dartagnan Tong and Heljanko

References

[1] Mixed-proxy extensions for the NVIDIA PTX memory consistency model. https://github.com/
NVlabs/mixedproxy. Accessed: 09/26/2023.

[2] SPIR-V, Extended Instruction Set, and Extension Specifications. https://registry.khronos.

org/SPIR-V/. Accessed: 06/12/2024.

[3] Vulkan-MemoryModel. https://github.com/KhronosGroup/Vulkan-MemoryModel. Accessed:
09/26/2023.

[4] Jade Alglave. A shared memory poetics. These de doctorat, L’université Paris Denis Diderot,
2010.

[5] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak consistency
model specification language cat. CoRR, abs/1608.07531, 2016.

[6] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient bounded model
checking of concurrent software. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 141–157. Springer,
2013.

[7] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, test-
ing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.

[8] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Portability analysis
for weak memory models. PORTHOS: One tool for all models. In Francesco Ranzato, editor, Static
Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 - September
1, 2017, Proceedings, volume 10422 of Lecture Notes in Computer Science, pages 299–320. Springer,
2017.

[9] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer.
BMC for weak memory models: Relation analysis for compact SMT encodings. In Isil Dillig and
Serdar Tasiran, editors, Computer Aided Verification - 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes
in Computer Science, pages 355–365. Springer, 2019.

[10] Daniel Jackson. Alloy: A language and tool for exploring software designs. Commun. ACM,
62(9):66–76, 2019.

[11] Daniel Lustig, Simon Cooksey, and Olivier Giroux. Mixed-proxy extensions for the NVIDIA
PTX memory consistency model: Industrial product. In Valentina Salapura, Mohamed Zahran,
Fred Chong, and Lingjia Tang, editors, ISCA ’22: The 49th Annual International Symposium on
Computer Architecture, New York, New York, USA, June 18 - 22, 2022, pages 1058–1070. ACM,
2022.

[12] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. A formal analysis of the NVIDIA PTX
memory consistency model. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-
17, 2019, pages 257–270. ACM, 2019.

[13] Haining Tong, Natalia Gavrilenko, Hernán Ponce de León, and Keijo Heljanko. Towards unified
analysis of GPU consistency. In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 4 (ASPLOS ’24), April 27-May 1, 2024,
La Jolla, CA, USA, 2024. Accepted manuscript, to be published.

4

Deadlock and Buffer Overflow Detection for Timed Kahn

Process Networks

Behnam Khodabandeloo1, Chengzi Huang1, Morteza Mohaqeqi1, Susanne Graf2,
and Wang Yi1

1 Uppsala University, Uppsala, Sweden
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France

Abstract

We propose modeling real-time systems as a network of real-time tasks connected by
communication channels, which are either FIFO queues or registers. The model is a timed
extension of Kahn Process Networks and has been shown to be both timing and functionally
deterministic. It is designed for the efficient analysis of safety properties in real-time
systems. In this work, we develop a method for efficiently checking the absence of buffer
overflow and deadlock in such networks.

1 Introduction

Achieving determinism in concurrent systems is inherently difficult due to the non-deterministic
nature of their software architectures. However, guaranteeing predictability is vital, especially
in safety-critical systems, like autonomous vehicles, where unexpected behavior can lead to
catastrophic outcomes [1]. As the complexity of modern systems continues to grow—driven
by the integration of AI, specialized hardware, and increasingly sophisticated algorithms—the
need for deterministic behavior becomes even more critical.

The MIMOS model [2] extends Kahn Process Networks by adding timing aspects to represent
real-time systems as networks of tasks connected via communication channel, which are either
FIFO queues or registers. This model ensures both timing and functional determinism. Each
task periodically computes a typed function, processing a tuple of data segments as input and
producing a tuple of data segments as output. If, at the start of a new period, there are enough
data elements for a complete input, as specified by the type of the function, it will be computed,
and the output will be delivered at the deadline. In this work, we develop a method to efficiently
check for the absence of buffer overflow and deadlock in such networks.

A MIMOS model is represented as a directed graph G = (N ,L), where N is the set of
nodes (software components) and L is the set of links (channels for data exchange). Each node
Ni ∈ N is defined by the tuple (Ii, Oi, Pi, Di):

� Ii: A set of input ports, where each in ∈ Ii is described as ⟨Type,Ki,in⟩, where:

– Type can be one of the following:

FIFO: Blocking, requires non-empty input for activation.

REGISTER: Non-blocking, returns the latest available value, accommodating
undersampling.

UPTO: Non-blocking FIFO, returns available data or an empty value if none
is present, handling oversampling.

– Ki,in represents the segment size associated with the input port.

� Oi: A set of output ports, producing Hi,out data tokens on output port out ∈ Oi per
activation at the end of the period.

Deadlock and Buffer Overflow Detection for Timed Kahn Process Network B. Khodabandeloo, et al.

� Pi: Activation period; activation requires all FIFO input ports to have sufficient tokens
for the node to execute.

� Di: Relative deadline, by which execution must complete in each period.

A link L ∈ L is represented as (src(L).out, sink(L).in), connects the output port out of node
src(L) to the input port in of node sink(L), transferring data tokens during each activation.
Note that if feedback links are inadequately initialized or buffers are insufficiently sized, the
system may experience deadlock or overflow. This work only addresses deadlocks and buffer
overflows for long running executions where overflow (deadlock) occurs independently of the
chosen buffer size (number of initial buffer elements).

2 The proposed solution

The proposed approach involves two phases: In the first phase, we calculate the actual period
of each node within the MIMOS network for long running executions. Using these results, we
then examine all links within the network to identify any buffer-overflow issues that may be
present. Additionally, we investigate the network to detect the presence of deadlocks.

Formulation: Let PA
i and P I

i represent the actual period and maximum input period of
node Ni, respectively. Our solution employs a fixed-point iteration method to compute these
values at each iteration t, denoted as PA

i (t) and P I
i (t). Using the actual periods at iteration t,

{PA
1 (t), ..., PA

|N |(t)}, the maximum input period at iteration t+ 1 is defined by:

P I
i (t+1) =





max
∀in∈Ii,

∃L=(Ns.out,Ni.in)

(
Type(in) = FIFO =⇒

(
PA
s (t)× Ki,in

Hs,out

)
, 0
)

if |IiN | ≠ 0

0 otherwise

(1)

The actual period at iteration t+ 1 is:

PA
i (t+ 1) = max(PA

i (t), P I
i (t+ 1))

Since the actual period is bounded by the nominal period, we initialize the actual period at
t = 0 as:

PA
i (0) = Pi

Algorithm: To determine the actual period of each node in a MIMOS network, Algo-
rithm 1 initializes each node’s period to its nominal value (line 1). To improve convergence,
it accounts for data dependencies by ordering nodes such that each node’s predecessors are
computed first. Since cycles exist in the MIMOS network, conventional topological sorting
cannot be applied directly. By removing feedback links denoted by LBE(back edges in DFS),
topological sorting becomes possible (line 2). Taking into account all edges, the algorithm then
computes in “topological” order, each node’s actual period by a fixed-point iteration (lines
3–17), terminating when all periods are stable (lines 14-16). For deadlock-free networks, the
algorithm is guaranteed to converge within the defined number of iterations (see proof, be-
low), with non-convergence indicating a potential deadlock (line 18). Figure 1a shows a case
where the algorithm converges, reaching a final result after three iterations. Figure 1b depicts
a scenario where the algorithm fails to converge.

Buffer overflow: Algorithm 1 computes the actual period (PA
i) for each node in the

MIMOS network, which can be used to identify links at risk of buffer overflow. For a link
L = (Nj .out,Ni.in), the risk is evaluated using the inequality:

Ki,in

PA
j

≤ Hj,out

PA
i

. By comparing

2

Deadlock and Buffer Overflow Detection for Timed Kahn Process Network B. Khodabandeloo, et al.

the data production of node Nj to the data consumption of node Ni, we can assess whether the
link is operating at or near maximal capacity, and choose an appropriate stream input type to
prevent buffer overflow errors from occurring.

Deadlock: The output of Algorithm 1 can help to detect deadlocks in a MIMOS system.
Since each node’s actual period increases monotonically, the algorithm should converge within
1 + |LBE | iterations in a deadlock-free network. If the algorithm does not stabilize after this
point, a deadlock is present.

Algorithm 1 Actual Period Calculation

1: ∀Ni ∈ N , PA
i ← Pi

2: NORD,LBE ← getNodesPartialOrder(G(N ,L))
3: iter ← 0
4: while iter ≤ 1 + |LBE | do
5: iter ← iter + 1
6: for each Ni ∈ NORD do
7: if |Ii

N | ̸= 0 then

8: P I
i ← compute using Equation 1

9: else
10: P I

i ← 0
11: end if
12: PA

i ← max(PA
i , P I

i)
13: end for
14: if not found changing in PA then
15: return true ▷ Not found deadlock
16: end if
17: end while
18: return false ▷ Found deadlock

(a) For a deadlock-free MIMOS model

(b) For a MIMOS model with deadlock

Figure 1: The proposed algorithm computations for actual period calculation

3 The correctness of the algorithm

Coverage: At each iteration of the algorithm, the actual period of a node can only increase (as
indicated by line 12). If the network is deadlock-free, we can fix periods for each node satisfying
the relationship imposed by the algorithm. The algorithm must converge in a finite number of
steps.

Boundedness: If the given network has no feedback edges, the algorithm converges in the
first iteration, as node periods are computed according to the dependency order. Now, consider
the end of the tth iteration and a node Nz, which is minimal in the dependency order, where
PA
z (t − 1) < PA

z (t). This condition implies that PA
z (t) = P I

z (t). Since the actual period of
all nodes smaller in the dependency orders remains unchanged in this iteration (by choice of
Nz), there must exist a feedback link (e.g., Lyz = (Ny.out,Nz.in)) to node Nz that causes this
change. This implies that the actual data rate of feedback link Lyz becomes stable after iteration
t. A similar claim can be made for another feedback link at iteration (t− 1). Generally, there
is at least one feedback link whose actual data rate stabilizes in each iteration of the algorithm.
Given that there are |LBE | feedback links in total, the algorithm converges within at most
1 + |LBE | iterations.

References

[1] Marten Lohstroh, Soroush Bateni, Christian Menard, Alexander Schulz-Rosengarten, Jeronimo
Castrillon, and Edward A. Lee. Deterministic coordination across multiple timelines. ACM Trans.
Embed. Comput. Syst., 23(5), aug 2024.

[2] Wang Yi, Morteza Mohaqeqi, and Susanne Graf. MIMOS: A deterministic model for the design
and update of real-time systems. In Coordination Models and Languages, volume 13271 of Lecture
Notes in Computer Science, pages 17–34. Springer, 2022.

3

On the Operational Semantics of the Free Cornering with

Protocol Choice

Chad Nester1 and Niels Voorneveld2∗

1 University of Tartu, Tartu, Estonia
nester@ut.ee

2 Cybernetica AS, Tallinn, Estonia
niels.voorneveld@cyber.ee

This work concerns the dynamics (operational semantics) of the free cornering with protocol
choice of a monoidal category. The free cornering construction provides a double categorical
notion of program interaction, but presently exists only as a formal semantics. Our project
is to work backwards from this formal semantics to obtain a simple interactive programming
language. Our first step is to orient some of the equations of the free cornering with protocol
choice to obtain a rewriting system, by which interactive programs may be evaluated. In this
extended abstract we summarize our progress towards this goal.

We begin by recalling the free cornering with choice of a monoidal category1, which is

defined to be the single-object double category (see e.g., [1]) ⌜
⌞A⌝⌟

+×
with horizontal edge monoid

⌜
⌞A⌝⌟

+×
H = (A0,⊗, I) given by the the object monoid of A, vertical edge monoid ⌜

⌞A⌝⌟
+×
V as in

Figure 1, and cells as in Figure 2. Objects of A are interpreted as collections of resources, and
morphisms f : A → B of A are interpreted as processes which consume the resources of A and

produce the resources of B. Elements of ⌜
⌞A⌝⌟

+×
V are interpreted as interaction protocols. Every

such protocol has a left participant and a right participant. To carry out the protocol A◦ the
left participant sends the right participant an instance of A. Dually, to carry out A• the right
participant sends the left participant an instance of A. To carry out U⊗W the participants first
carry out U and then carry out W , and I is carried out by doing nothing. Finally, to carry out
U +W the left participant chooses which of U and W will happen, and the participants carry
out that protocol. Dually, to carry out U ×W the right participant chooses which protocol will

happen. A cell of ⌜
⌞A⌝⌟

+×
of type (U A

BW) describes a procedure for transforming the resources
of A into the resources of B while acting as the left participant of the interaction protocol W ,
and as the right participant of U . For a more detailed account see [2].

The dynamics of programming languages are commonly specified by term rewriting systems.
We require an analogous sort of rewriting system on a single-object double category. Term
rewriting systems are a special case of what we will call monoidal category rewriting systems,
which consist of a category X together with a generating binary relation →R⊆ X(X,Y) for
each X,Y ∈ X0 which is coherent with respect to composition and the tensor product. For
example, we ask that if f →R g then f ⊗ h →R g ⊗ h. The usual term rewriting systems form
a category rewriting system on the category of tuples of terms. Monoidal category rewriting
systems suggest a notion of rewriting system on a single-object double category D, in which
we have a binary relation →R⊆ D(U A

BW)× D(U A
BW) for all U,W ∈ DV and A,B ∈ DH which

is coherent with respect to vertical and horizontal composition. For example, we ask that if

∗Niels Voorneveld is supported by the European Union under Grant Agreement No. 101087529. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or European Research Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them.

1In particular, a strict monoidal category. In this document, “monoidal category” means “strict monoidal
category”.

On the Operational Semantics of the Free Cornering with Protocol Chocie C. Nester and N. Voorneveld

The elements of ⌜
⌞A⌝⌟

+×
V are formed according to the following rules:

I ∈ ⌜
⌞A⌝⌟

+×
V

A ∈ A0

A◦ ∈ ⌜
⌞A⌝⌟

+×
V

A ∈ A0

A• ∈ ⌜
⌞A⌝⌟

+×
V

U,W ∈ ⌜
⌞A⌝⌟

+×
V

U ⊗W ∈ ⌜
⌞A⌝⌟

+×
V

U, V ∈ ⌜
⌞A⌝⌟

+×
V

U + V ∈ ⌜
⌞A⌝⌟

+×
V

U, V ∈ ⌜
⌞A⌝⌟

+×
V

U × V ∈ ⌜
⌞A⌝⌟

+×
V

and are subject to the following equations:

(U ⊗W)⊗ V = U ⊗ (W ⊗ V) I ⊗ U = U = U ⊗ I

Figure 1: ⌜
⌞A⌝⌟

+×
V , the vertical edge monoid of ⌜

⌞A⌝⌟
+×

.

f →R g then f | h →R g | h. Our goal is to orient equations of the free cornering with protocol
choice to obtain well-behaved rewriting systems of this kind.

We consider the rewriting system ⇒ indicated in Figure 2 on the single-object double cate-
gory obtained by retaining the rest of the equations. This rewriting system is terminating and
confluent. Further, suppose that we are given a monoidal category rewriting system →R on A
representing the dynamics of A as a non-interactive programming language. Let ⇒R consist of
the rewrites of ⇒ together with a rewrite ⌜

⌞f
⌝
⌟ ⇒R

⌜
⌞g
⌝
⌟ for each rewrite f →R g. Then we have:

Theorem 1.

(i) If →R is terminating then ⇒R is terminating.

(ii) If →R is confluent then ⇒R is confluent.

Thus, our approach to the dynamics of interacting programs is modular in the sense that it is
well-behaved with respect to the dynamics of the underlying programming language. Further,
a careful inductive argument concerning the elimination of “internal” redexes yields a proof of
a conjecture from [2]:

Theorem 2. Let A be a monoidal category. Then there is an isomorphsim of categories

V ⌜
⌞A⌝⌟

+× ∼= A, where V ⌜
⌞A⌝⌟ is the category of vertical cells of ⌜

⌞A⌝⌟ (see e.g., [1]).

In future work, we hope to extend our rewriting system to account for all of the structure
added to the free cornering in [2]. This includes active choice, which models case statements
in the non-interactive fragment of the system and their relationship to protocol choice, as well
as protocol iteration, which allows protocols to be repeated an indefinite number of times based
on the choices of the participants. Eventually, we would like to implement a simple interactive
programming language based on these ideas. To that end, we will attempt to design an abstract
machine describing the efficient implementation of the rewriting semantics presented here.

References

[1] C. Nester. Concurrent Process Histories and Resource Transducers. Logical Methods in Computer
Science, Volume 19, Issue 1, January 2023.

2

On the Operational Semantics of the Free Cornering with Protocol Chocie C. Nester and N. Voorneveld

The cells of ⌜
⌞A⌝⌟

+×
are formed according to the following rules:

f ∈ A(A,B)

⌜
⌞f

⌝
⌟ :

(
I
A

B
I

) A ∈ A0

1A :
(
I
A

A
I

) U ∈ ⌜
⌞A⌝⌟

+×
V

idU :
(
U

I

I
U

)

a :
(
U

A

B
W

)
b :

(
U ′ B

C
W ′

)

a

b
:
(
U⊗U ′ A

C
W⊗W ′

)
a :

(
U

A

B
W

)
b :

(
W

A′

B′ V

)

a | b :
(

U
A⊗A′

B⊗B′ V

)

A ∈ A0

getAL :
(
A◦ I

A
I

) A ∈ A0

putAR :
(
I
A

I
A◦

) A ∈ A0

getAR :
(
I
I

A
A•

) A ∈ A0

putAL :
(
A• A

I
I

)

U,W ∈ ⌜
⌞A⌝⌟

+×
V

πU,W
0 :

(
U×W

I

I
U

) U,W ∈ ⌜
⌞A⌝⌟

+×
V

πU,W
1 :

(
U×W

I

I
W

)
a :

(
V

A

B
U

)
b :

(
V

A

B
W

)

a× b :
(
V

A

B
U×W

)

U,W ∈ ⌜
⌞A⌝⌟

+×

πU,W
0 :

(
U

I

I
U+W

) U,W ∈ ⌜
⌞A⌝⌟

+×

πU,W
1 :

(
W

I

I
U+W

)
a :

(
U

A

B
V

)
b :

(
W

A

B
V

)

a+ b :
(
U+W

A

B
V

)

and are subject to the the following equations. Here we write ⇒ to indicate those equations
that become the generating rewrites of our rewriting system. That is, we both define the
free cornering with protocol choice (in which every a ⇒ b is taken as an equation) and also
indicate the generating rewrites a ⇒ b of our double category rewriting system.

⌜
⌞f

⌝
⌟

⌜⌞g⌝⌟
= ⌜

⌞f ; g
⌝
⌟

⌜
⌞f

⌝
⌟ | ⌜⌞g⌝⌟ = ⌜

⌞f ⊗ g⌝⌟ 1A = ⌜
⌞1A

⌝
⌟

1A
a

= a =
a

1B

idU | a = a = a | idW
a(
b
c

) =

(
a
b

)

c
(a | b) | c = a | (b | c) a | b

c | d =
a

c
| b
d

getAR | putAL ⇒ 1A
getAR
putAL

⇒ idA• putAR | getAL ⇒ 1A
getAL
putAR

⇒ idA◦

(a× b) | π0 ⇒ a (a× b) | π1 ⇒ b (h | π0)× (h | π1) ⇒ h

π

0 | (a+ b) ⇒ a π

1 | (a+ b) ⇒ b (π

0 | h) + (π

1 | h) ⇒ h

We note that this definition differs from the one given in [2] in that we ask for a version of
the surjective paring axiom for our binary + and × operations instead of the corresponding
uniqueness condition. The resulting double categories are identical.

Figure 2: The cells of ⌜
⌞A⌝⌟

+×
.

3

On the Operational Semantics of the Free Cornering with Protocol Chocie C. Nester and N. Voorneveld

[2] C. Nester and N. Voorneveld. Protocol Choice and Iteration for the Free Cornering. Journal of
Logical and Algebraic Methods in Programming, 137:100942, 2024.

4

DropShadow: Hypercontracts in Go∗

Andreas Kjeldgaard Brandhøj, Dat Tommy Thanh Dieu, Kasper Vesteraa,
Danny Bøgsted Poulsen, René Rydhof Hansen, and Kim Guldstrand Larsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
tommydieu@outlook.dk, kasperwesteraa@gmail.com, {akbr, dannybpoulsen, rrh,

kgl}@cs.aau.dk

Go is a widely used language for embedded devices, systems programming, cloud and net-
work services. All require a high degree of quality assurance and, in some cases, service level
agreements. The Go community has made significant efforts to provide testing tools, evident
in features such as the built-in support for property-based testing and fuzzing. Developers
often combine different approach to cover various aspects of their programs, but many sys-
tems require more thorough testing and documentation capabilities than the provided tools
support. Contract-based programming is an approach with the potential to bridge this gap.
However, contracts generally only consider a single execution of the function, severely limiting
the properties which can be expressed in the contract and their corresponding tests. Here we
present DropShadow, a novel tool for Go, which enables experimental generation of hypertests
for hypercontracts, which universally quantifies over pairs of executions. To limit the overhead
of testing the contracts, DropShadow automatically handles the full process of generating auto-
matic hypertests and executing them to find counterexamples. We illustrate how DropShadow
can specify certain hyperproperties such as the secure information flow policy non-interference
to improve the software’s security and quality. Experiments are promising, but service level
agreements are not yet supported, and contract complexity is limiting the full potential.

Contract-based programming is an approach to developing software where developers specify
the requirements on input to a function and the guarantees on the output of the function in
terms of pre- and post-conditions [11]. Hyperproperties is an extension to trace properties and
is a set of sets of traces (i.e. set of trace properties) [5]. Contracts can include hyperproperties
by specifying a relation between multiple executions of the same function, in this case we call
them hypercontracts. The extension to contracts is desirable since some properties can only be
expressed as hyperproperties such as non-interference and observational determinism [5].

DropShadow enables developers to specify relations over inputs and outputs of pairs of ex-
ecutions, which allows specifying hyperproperties universally quantifying over pairs of finite
traces. These hypercontracts define expected behavior, and DropShadow automatically inte-
grates them into the code by adding assertions to catch any potential violations. Additionally,
DropShadow generates hypertests and run them with input generators, which are user-defined
constructs implementing both inclusion checks and the generation of included elements.

1 // assume: value = AnyNumber[int](0)

2 // expect: ret >= 0 && ((value < 0 && ret == -value) ||

3 // (value >= 0 && ret == value &&))

4 func Absolute(value int) int {

5 if value < 0 {

6 return -value

7 }

8 return value

9 }

∗This abstract reports on the work done on the MSc theis [2].

DropShadow: Hypercontracts in Go Brandhøj, Dieu, Vesteraa, Poulsen, Hansen, and Larsen

Existing tools such as grpc-go-contracts [8] and gocontract [15] enables developers to write
pre- and post-conditions in function bodies. Whereas, go-contracts [13] and dbc4go [3] enables
contractual specifications as function documentation over individual executions. The tools
inject assertions and rely on the existing tests to check the contracts. Existing tools can be used
for hyperproperties but requires the sequential self-composition to be manually constructed.
The black-box fuzzer LeakFuzzer [1], is limited to testing non-interference by segmenting its
input and keeping track of the public and private input and storing previous outputs. A common
aspect of many fuzzers is the categorization of interesting inputs, which are inputs uncovering
new paths of the fuzz target. A framework for hypertests was developed in [9] wherein they
describe a coverage metric as the uncovering of the program as pairs of executions.

Checks

Tests

Generators

Test ResultContractsFile
Parse

Inject

Generate

Run Tests

Figure 1: A summary of DropShadow’s workflow, starting with parsing a Go source file, followed
by injecting hyperproperty checks and generating tests, and lastly running them, potentially
exposing counterexamples.

DropShadow begins by parsing the Go source files using the standard library parser. During
parsing, the contracts for each function are identified as function documentation and parsed.
The contracts are then used for two purposes: injecting checks (both assertions and sequential
self-composition for the hyperproperty) and generating hypertests. Both tasks rely on genera-
tors, depicted in Figure 1. Tests use the generators’ generation, whilst the injected assertions
use inclusion checks. Once all tests are generated and assertions inserted, the tests are executed,
potentially exposing counterexamples for the hyperproperty.

As similar existing contract tools do not handle the generation of tests and test inputs, they
rely on users potentially exploring their contracts with tools such as rapid [14], gopter [10],
or standard library quick [7] to perform property-based testing. In contrast, the generators in
DropShadow serve a similar purpose to the ones in QuickCheck [4], but with inclusion checks.
It relies on the generator’s implementation to describe the required conditions of the input. The
benefit of using generators is the potential for efficient user defined-custom generation, which
supports any type, can be used in contracts, and test input generation. An example is the
GE[int](n) generator, which randomly generates an int greater than or equal to n and can
check if a number satisfies the constraint.

Through experimentation, we found the post-condition to often specify an outcome in spe-
cific bounds on the input - like that of partition testing. To alleviate this, we defined named
regions to split the post-conditions depending on the input value. This allowed the specification
of some contracts to be more readable. Depending on which regions the input belongs to, a
specific post-condition must be satisfied. The contract is breached if any input either does not
fall within any region or it falls within some regions but the post-condition is not satisfied. the
contract for Absolute is an example of a subtle breach, which can be found by calling it with

2

DropShadow: Hypercontracts in Go Brandhøj, Dieu, Vesteraa, Poulsen, Hansen, and Larsen

the minimum integer value which overflows before returned.

1 // region: Positive

2 // assume: value = GE[int](0)

3 // expect: ret >= 0 && ret == value

4 // region: Negative

5 // assume: value = LT[int](0)

6 // expect: ret >= 0 && ret == -value

7 func Absolute(value int) int {

8 if value < 0 {

9 return -value

10 }

11 return value

12 }

Non-interference is a hyperproperty which states that two executions with the same low but
different high inputs must have the same observable output. This is supported by DropShadow
because the hypercontracts allow the specification of a proceeding call to the function where the
inputs and outputs can have a defined relation. A violation of the non-interference property can
be found by executing Retain twice, once with an even and an odd high input, and compare
the outputs.

1 // assume: low = AnyNumber[int]()

2 // assume: high = AnyNumber[int]()

3 // hyper:

4 // assume: low_p = low

5 // assume: high_p = AnyNumber[int]().Next()

6 // expect: ret == ret_p

7 func Retain(low, high int) int {

8 if high % 2 == 0 {

9 return 0

10 }

11 return low

12 }

In general, we found examples suggesting the usefulness of the tool to effectively commu-
nicating contractual specifications for hyperproperties. However, it faces practical limitations,
such as increased runtime, restrictions to pure functions, and the rapid growth of contracts.
The use of generators allows for highly specific user-defined types and custom distributions.
However, in some cases, using the generators as a part of the contracts can reduce the readabil-
ity. Go, being a relatively new language, has limited tooling for formal methods. Nevertheless,
exploring symbolic execution in combination with sequential self-composition of functions may
offer a viable approach to verifying hypercontracts. Moreover, symbolic execution can po-
tentially use the contracts to optimize execution paths by replacing function calls with their
corresponding contracts if they have been verified. Some progress has been made in this area
by extending Viper [12] for separation logic to support hyperproperties in Hypra [6], as well
as the development of Gobra [16], a tool that translates Go code into Viper. However, service
level agreements, such as the mean response time for requests with sizes greater than 100MB
must not exceed 100ms which requires probabilistic hyperproperties and a time metric is yet
unsupported.

3

DropShadow: Hypercontracts in Go Brandhøj, Dieu, Vesteraa, Poulsen, Hansen, and Larsen

References

[1] Daniel Blackwell, Ingolf Becker, and David Clark. Hyperfuzzing: black-box security hypertesting
with a grey-box fuzzer. CoRR, abs/2308.09081, 2023.

[2] Andreas Kjeldgaard Brandhøj, Dat Tommy Thanh Dieu, Kasper Westeraa, Danny Bøgsted
Poulsen, and René Rydhof Hansen. Dropshadow: Instrumenting Go with Contracts and Au-
tomatic Property-based Test Generation of Hyperproperties. Master’s thesis, Aalborg University,
June 2024.

[3] chavacava. dbc4go. https://github.com/chavacava/dbc4go. Accessed on: 21-10-2024.

[4] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell
programs. In Martin Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000, pages 268–279. ACM, 2000.

[5] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–1210,
2010.

[6] Thibault Dardinier, Anqi Li, and Peter Müller. Hypra: A deductive program verifier for hyper
hoare logic. Proceedings of the ACM on Programming Languages, 8(OOPSLA2):1279–1308, 2024.

[7] Google. quick. https://pkg.go.dev/testing/quick. Accessed on: 21-10-2024.

[8] Shayan Hosseini. grpc-go-contracts. https://github.com/shayanh/grpc-go-contracts. Ac-
cessed on: 21-10-2024.

[9] Johannes Kinder. Hypertesting: The case for automated testing of hyperproperties. In 3rd Work-
shop on Hot Issues in Security Principles and Trust (HotSpot), pages 1–8, 2015.

[10] leanovate. gopter. https://github.com/leanovate/gopter. Accessed on: 21-10-2024.

[11] Bertrand Meyer. Introduction to the Theory of Programming Languages. Prentice-Hall, 1990.

[12] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In Alexander Pretschner, Doron Peled, and Thomas Hutzelmann,
editors, Dependable Software Systems Engineering, volume 50 of NATO Science for Peace and
Security Series - D: Information and Communication Security, pages 104–125. IOS Press, 2017.

[13] Parquery. gocontracts. https://github.com/Parquery/gocontracts. Accessed on: 21-10-2024.

[14] Gregory Petrosyan. rapid. https://github.com/flyingmutant/rapid. Accessed on: 21-10-2024.

[15] Klassen Software Solutions. gocontracts. https://github.com/klassen-software-solutions/

gocontract. Accessed on: 21-10-2024.

[16] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos Pereira, and Peter
Müller. Gobra: Modular specification and verification of go programs. In Alexandra Silva and
K. Rustan M. Leino, editors, Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of Lecture Notes in
Computer Science, pages 367–379. Springer, 2021.

4

Strategy Synthesis for

First-Order Agent Programs over Finite Traces

Till Hofmann1 and Jens Claßen2

1 RWTH Aachen University, Germany
till.hofmann@cs.rwth-aachen.de

2 Roskilde University, Denmark
classen@ruc.dk

In this work,1 we consider the task of synthesizing an execution strategy for an agent from
a high-level description of the initial state of the world, the actions available to the agent,
a control program, and a temporal goal. In particular, we look at the case of infinite-state
systems with unbounded object domains, based on a specification formalism with first-order
expressiveness, as well as exogenous events, triggered by the non-deterministic environment.
More specifically, we use the agent programming language Golog [11]. Golog in turn is based
on the situation calculus [13, 15], a first-order logic formalism for reasoning about change. Here,
a situation calculus action theory (perhaps incompletely) describes the initial state of the world,
together with the preconditions and effects of primitive actions at the agent’s disposal, while
Golog programs then combine primitive actions into more complex behaviours using sequence,
iteration, non-deterministic branching, and concurrency [5]. Since both imperative and non-
deterministic program constructs are included, this allows for combining programming and
planning in a flexible manner.

As an example, adapted from [3], consider a robot that has to clean dirty dishes. It can
move between a number of different rooms and the kitchen, load (an arbitrary number of) dirty
dishes onto itself located in specific rooms, and unload dishes it carries into the dishwasher in
the kitchen. Here we use a modal variant of the situation calculus called ES [10], where these
actions would be represented through functions goto(x), load(x, y), and unload(x), respectively,
whereas properties that change due to actions are encoded by fluent predicates such as At(x)
or OnRobot(x). An action theory D = D0 ∪ Dpre ∪ Dpost then consists of three parts:

1. The initial theory D0 is a finite set of axioms that encodes what is true initially. For
example, the robot might be in the kitchen, and not carry any dirty dishes yet:

At(kitchen) ∧ ¬∃xOnRobot(x)

2. The precondition axiom Dpre states when each action a can be executed in terms of
the special fluent Poss(a). For instance, the robot can unload a dirty dish x into the
dishwasher iff it is currently carrying x and it is located in the kitchen (the modal operator
2 expresses that the subformula is true now and after any sequence of actions; free variable
x is understood as implicitly ∀-quantified from the outside):

2Poss(unload(x)) ≡ OnRobot(x) ∧At(kitchen)

3. The successor state axioms (SSAs) Dpost express the changes to fluents’ values due to
actions. For example, the robot will hold dish x after action a just in case a was the
action of loading x from room y, or the robot was already holding x previously and a was
not the action of unloading x (the modal operator [a] reads as “after action a”):

□[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨OnRobot(x) ∧ a ̸= unload(x)
1This paper gives an overview. A full version with all formal details is available at [8].

Strategy Synthesis for FO Agent Programs over Finite Traces Hofmann and Claßen

Given such a theory, a Golog program for the robot could be the following:

loop:
while ∃x.OnRobot(x) do πx : {d1, . . . , dm}. unload(x);
πy : {r1, . . . , rn}. goto(y);
while ∃x.DirtyDish(x, y) do πx : {d1, . . . , dm}. load(x, y);
goto(kitchen)

That is to say, the agent is instructed to iterate (loop) a subprogram where in each cycle, it
first performs a loop to unload any dishes it is holding into the dishwasher. Afterwards, it
chooses a room to move to, where it loads up all dirty dishes (if any) in another loop. Finally,
it moves back to the kitchen. Here, π operators denote a finitary non-deterministic choice of
argument; e.g., πx : {d1, . . . , dm} means “choose some x from among dishes d1, . . . , dm”, where
each di is an ES constant.

The program thus defines a general structure for the robot’s course of action, but leaves
certain choices open, such as what room to go next to. Typically, it is assumed that the agent
is in complete control, i.e., that all such non-determinism is “angelic”. More recently, different
forms of “demonic” non-determinism have been studied [4, 2], where actions have outcomes that
are determined by the environment. For example, we might have another program running in
parallel that occasionally triggers an action to place some new dirty dish x into some room y
(to simulate a dynamic environment with people that use the dishes):

loop: πx : {d1, . . . , dm}, y : {r1, . . . , rn}.newDish(x, y)

Here we are particularly interested in scenarios where agent and environment do not act in
turns, as is often assumed, but where they more realistically may act in arbitrary order, similar
to supervisory control [14]. In this setting, program realization becomes a synthesis task. The
goal is to determine a policy that executes the program, while also satisfying a temporal goal,
independent of and reacting to all possible environment behaviors. Temporal formulas are
expressed in terms of LTLf, a restriction of Linear Temporal Logic (LTL) to finite traces [6].
For example, we may want to require that eventually (F) there will always (G) be no more
dirty dish:

F G ¬∃x, y.DirtyDish(x, y) (1)

The Golog language provides a large degree of expressiveness, in particular in terms of first-
order quantification, allowing to represent infinite-state systems over unbounded domains. The
synthesis problem is thus highly undecidable in general. In this work, we present a decidable
approach that works on a non-trivial fragment. Specifically, exploiting results on decidable
verification of Golog [17], we require that

• all non-modal subformulas fall into the (decidable) two-variable fragment of first-order
logic with counting quantifiers [7],

• the non-deterministic choice of action arguments π only ranges over finite sets, and

• dependencies among fluent predicates in successor state axioms satisfy a certain acyclicity
criterion.

We can then construct an abstract, finite “game arena” (a special form of transition system)
that captures all possible program executions while also tracking the satisfaction of the tem-
poral specification. Using an encoding of LTLf formulas that interprets temporal formulas as
propositional atoms [12], the construction works on-the-fly and avoids building irrelevant parts.

2

Strategy Synthesis for FO Agent Programs over Finite Traces Hofmann and Claßen

0 3goto(r)

1✓ 4✓unload(d)

2✓

5✓goto(r)

6

newDish(d,r)

7✓load(d,r)

8✓goto(r)

9✓
goto(kit)

10
newDish(d,r)

goto(r)

11✓goto(kit)

12✓
goto(kit)

goto(r)
13newDish(d,r)

14✓load(d,r)

15✓unload(d)

goto(r)

goto(r)

16✓goto(kit)

17✓goto(r)

18✓unload(d)

19✓goto(kit)

20✓goto(r)

goto(r)

21✓goto(kit)
goto(r)

Figure 1: Example game arena with single room r and single dish d. Left are initial states with
one new dish and none on robot (0), no new dish and one on robot (1), and no new dish and
none on robot (2). Double circles indicate final states where program execution may terminate.
Check marks indicate accepting states where the temporal goal is completed.

A game-theoretic approach can then be applied to synthesize a policy. Figure 1 shows an ex-
ample game arena for the dishwasher robot if there is only one room r and one dish d, but
where the initial state is underspecified so that the dish may initially be in the room, on the
robot, or neither.

We implemented the method for the Golog interpreter vergo [1], which uses embedded the-
orem provers [16, 9] for first-order reasoning tasks and a first-order variant of binary decision
diagrams for concisely representing formulas. We did an experimental evaluation on the dish-
washer robot domain as well as a domain with a warehouse robot that moves boxes which may
fall non-deterministically and break their contents. In the experiment, we varied the overall
numbers of dishes, rooms, and boxes, and measured the method’s runtime as well as the size
of the resulting game arenas and extracted strategies. The set time-out of 1500 seconds was
reached quickly for instances with 3 or more rooms, 3 or more dishes, and 3 or more boxes,
yielding game arenas up to around 3000 states and transitions. Note that although decidable,
the problem is very hard: In the worst case, the number of states in the abstract game arena
is double exponential in the size of the input, and computing them involves consistency checks
over sets of formulas that take up to double exponential time.

While the experiments thus demonstrate that the method works in principle, they also point
out possible avenues of future work in terms of possible improvements. In particular, Golog
programs often contain symmetries in the sense that there is a number of objects each of which
need to be handled independently in the same way (e.g., the dishes in our example). For solving
the task, the order of handling objects is hence irrelevant, yet the current method materializes
all possible permutations, resulting in a severe blow-up of the size of the abstract transition
system. It may therefore be interesting to study how the approach can be adapted to detect
and deal with symmetries of this kind. Another limitation is the restriction that the π operator
ranges over finite sets only. It can be shown that dropping this constraint altogether quickly
results in undecidability, but the condition seems very harsh in light of the fact that non-finitary
quantification is allowed in other places such as the action theory or the temporal goal. We are
therefore interested in identifying perhaps “softer” restrictions that still guarantee decidability,
yet allow for picking action arguments from potentially infinite sets.

3

Strategy Synthesis for FO Agent Programs over Finite Traces Hofmann and Claßen

References

[1] Jens Claßen. Symbolic verification of Golog programs with first-order BDDs. In Michael Thielscher,
Francesca Toni, and Frank Wolter, editors, Proceedings of the Sixteenth International Conference
on the Principles of Knowledge Representation and Reasoning (KR 2018), pages 524–529. AAAI
Press, 2018.

[2] Jens Claßen and James P. Delgrande. An Account of Intensional and Extensional Actions, and its
Application to Belief, Nondeterministic Actions and Fallible Sensors. In Proceedings of the Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR), volume 18,
pages 194–204, September 2021.

[3] Jens Claßen, Martin Liebenberg, Gerhard Lakemeyer, and Benjamin Zarrieß. Exploring the bound-
aries of decidable verification of non-terminating Golog programs. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI), pages 1012–1019. AAAI Press, 2014.

[4] Giuseppe De Giacomo and Yves Lespérance. The nondeterministic situation calculus. In Proceed-
ings of the International Conference on Principles of Knowledge Representation and Reasoning
(KR), volume 18, pages 216–226. AAAI Press, September 2021.

[5] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121:109–169, 2000.

[6] Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on Finite Traces. In
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pages
1558–1564. AAAI Press, 2015.

[7] Erich Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In Proceedings
of Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS), pages 306–317, June
1997.

[8] Till Hofmann and Jens Claßen. LTLf synthesis on first-order action theories, 2024.
arXiv:2410.00726.

[9] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, Proceedings of the Twentyfifth International Conference on
Computer Aided Verification (CAV 2013), volume 8044 of Lecture Notes in Computer Science,
pages 1–35. Springer, 2013.

[10] Gerhard Lakemeyer and Hector J. Levesque. A semantic characterization of a useful fragment of
the situation calculus with knowledge. Artificial Intelligence, 175(1):142–164, 2010.

[11] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59–83, 1997.

[12] Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, and Kristin Y. Rozier. SAT-based
explicit LTLf satisfiability checking. Artificial Intelligence, 289:103369, December 2020.

[13] John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence, 4:463–502, 1969.

[14] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proceedings of the
IEEE, 77(1):81–98, January 1989.

[15] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, 2001.

[16] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Proceedings of the Twenty-Seventh International Conference on Automated
Deduction (CADE 2019), volume 11716 of Lecture Notes in Computer Science, pages 495–507.
Springer, 2019.

[17] Benjamin Zarrieß and Jens Claßen. Decidable verification of Golog programs over non-local effect
actions. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pages
1109–1115. AAAI Press, 2016.

4

Approximate Relational Reasoning for Higher-Order

Probabilistic Programs

Philipp G. Haselwarter1, Kwing Hei Li1, Alejandro Aguirre1, Simon Oddershede
Gregersen2, Joseph Tassarotti2, and Lars Birkedal1

1 Aarhus University, Denmark
2 New York University, USA

Abstract

Properties such as provable security and correctness for randomized programs are natu-
rally expressed relationally as approximate equivalences. As a result, a number of relational
program logics have been developed to reason about such approximate equivalences of prob-
abilistic programs. However, existing approximate relational logics are mostly restricted
to first-order programs without general state.

In this paper we develop Approxis, a higher-order approximate relational separation
logic for reasoning about approximate equivalence of programs written in an expressive
ML-like language with discrete probabilistic sampling, higher-order functions, and higher-
order state. The Approxis logic recasts the concept of error credits in the relational setting
to reason about relational approximation, which allows for expressive notions of modularity
and composition, a range of new approximate relational rules, and an internalization of a
standard limiting argument for showing exact probabilistic equivalences by approximation.
We also use Approxis to develop a logical relation model that quantifies over error credits,
which can be used to prove exact contextual equivalence. We demonstrate the flexibility of
our approach on a range of examples, including the PRP/PRF switching lemma, IND$-
CPA security of an encryption scheme, and a collection of rejection samplers. All of the
results have been mechanized in the Coq proof assistant and the Iris separation logic
framework.

1 Introduction

Many important properties of probabilistic programs are naturally expressed as approximate
equivalence of two programs. For example, provable security [GM84] compares an implementa-
tion of a cryptographic scheme to an idealized specification program that does not have access
to any sensitive information, and aims to show that an adversary can only distinguish them with
some small probability. In a similar spirit, many randomized algorithms and data structures
can be specified by showing that they are approximately equivalent to their non-probabilistic
counterparts. Consequently, it is important to be able to reason about approximate equiva-
lences and so a number of relational program logics have been developed for first-order lan-
guages [BKOZB12, BGG+16, BEG+17] or higher-order languages with first-order global state
[ABG+21].

In this work, we develop Approxis, a higher-order approximate relational separation logic
for reasoning about approximate equivalence of RandML programs, an expressive ML-like lan-
guage with discrete random sampling, higher-order functions, and higher-order dynamically-
allocated state. A key point is that Approxis, inspired by the unary Eris logic [AHdM+24],
introduces error credits in the relational setting to reason about approximation. Error cred-
its are separation-logic resources that bound the maximum approximation error between two
programs. We introduce a collection of novel approximate coupling rules, which consume error

Approxis Haselwarter, Li, Aguirre, Gregersen, Tassarotti, Birkedal

credits in order to relate randomized transitions of two programs. By treating the relational
approximation error as just another separation-logic resource, Approxis provides modular rea-
soning principles that enable more precise error accounting when composing proofs, much as
Eris demonstrated in the non-relational setting.

Surprisingly, error credits not only allow us to prove approximate equivalences, they also al-
low us to prove exact equivalences that were beyond the scope of prior coupling-based relational
program logics. Just as in real analysis, where one can prove two numbers are equal by showing
that the distance between them is smaller than ε for all ε > 0, we can similarly show two prob-
ability distributions are equivalent by showing the distance between them is bounded by ε for
all ε > 0. Using Approxis, we show how to recover this technique internally in the logic through
error amplification [AHdM+24] and thus prove exact equivalence of probabilistic programs by
means of approximation. Based on this, we develop a new binary logical relations model of a
rich type system for RandML with recursive types and impredicative polymorphism. The model
supports approximate reasoning and gives us a powerful and novel method for showing exact
contextual equivalence of higher-order probabilistic programs. For other existing approaches,
including both operational approaches, e.g., Clutch [GAH+24], and denotational approaches,
e.g., pRHL [BGZB09] and HO-RHL [ABG+21], some of the examples that we consider would
be very complicated—if not impossible—to handle.

We show that Approxis scales to more involved approximate reasoning by showing the clas-
sical PRP/PRF Switching Lemma [HWKS98, BR04] and IND$-CPA security of a PRF-based
symmetric encryption scheme. Moreover, we apply error amplification and our logical relation
to show contextual equivalences for a collection of rejection samplers, including a sampling
scheme for drawing a random sample from a B+ tree [BM72].

Examples like the PRP/PRF Switching Lemma have been verified in many different set-
tings, but we emphasize the rich programming language we consider here. While some of these
examples might be expressible in simpler languages, features such as higher-order functions,
higher-order state, and polymorphism are all found in general-purpose programming languages,
and are needed for modern compositional software development. Moreover, cryptographic se-
curity can be more naturally expressed in such higher-order languages and avoids the need for
syntactic restrictions on adversaries as seen, e.g., in EasyCrypt [BDG+14]. As a consequence,
verification frameworks must handle these language features to reason about large applications
and realistic implementations. Higher-order separation logic is a powerful and well-tested ab-
straction for this purpose, and Approxis shows how to beneficially apply it for approximate
relational reasoning. While the B+ tree case study, for example, is quite involved, the complex-
ity is managed through mostly-standard separation-logic reasoning. We see this as a significant
strength of our approach.

At a technical level, our development builds upon the (non-approximate) probabilistic cou-
pling logic Clutch [GAH+24]. By incorporating error credits [AHdM+24] in the relational
setting, our development generalizes the approach to approximate reasoning using approximate
couplings. In addition, we introduce two new coupling precondition connectives and a notion
of erasability. The erasability condition not only captures the soundness of asynchronous cou-
plings [GAH+24] in a more semantic way, but also allows for a more principled approach to
validating the new approximate and non-approximate coupling rules we introduce and which
are critical for the examples that we consider.

Contributions In summary, we make the following contributions:

• The first higher-order approximate relational separation logic, Approxis, for reasoning
about approximate equivalence of RandML programs, an expressive ML-like language

2

Approxis Haselwarter, Li, Aguirre, Gregersen, Tassarotti, Birkedal

with probabilistic sampling, higher-order functions, and higher-order state,

• A logical internalization of a limiting argument that allows us to show exact equivalence
of higher-order probabilistic programs through approximation,

• A class of new approximate and non-approximate coupling rules, including the many-to-
one and fragmented coupling rules,

• A logical relations model of an expressive type system for RandML with recursive types
and impredicative polymorphism, which allows us to show (exact) contextual equivalence
of probabilistic programs through a limiting argument,

• A collection of case studies: the PRP/PRF Switching Lemma [HWKS98, BR04], IND$-
CPA security of a PRF-based symmetric encryption scheme, and contextual equivalence
of a selection of rejection samplers, including a sampling scheme for drawing a random
sample from a B+ tree [BM72]. Several of these are, to the best of our knowledge, beyond
the scope of previous techniques, in particular for expressive languages such as RandML.

• Full mechanization of all results in the Coq proof assistant [Tea24], building on top of
the Iris separation logic framework [JKJ+18] and the Coquelicot [BLM15] library for real
analysis.

Note: A full preprint of this work is available [HLA+24].

Acknowledgments This work was supported in part by the National Science Foundation,
grant no. 2338317, the Carlsberg Foundation, grant no. CF23-0791, a Villum Investigator grant,
no. 25804, Center for Basic Research in Program Verification (CPV), from the VILLUM Foun-
dation, and the European Union (ERC, CHORDS, 101096090). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting au-
thority can be held responsible for them.

3

Approxis Haselwarter, Li, Aguirre, Gregersen, Tassarotti, Birkedal

References

[ABG+21] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Kat-
sumata, and Tetsuya Sato. Higher-order probabilistic adversarial computations:
categorical semantics and program logics. Proc. ACM Program. Lang., 5(ICFP),
aug 2021.

[AHdM+24] Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li,
Simon Oddershede Gregersen, Joseph Tassarotti, and Lars Birkedal. Error credits:
Resourceful reasoning about error bounds for higher-order probabilistic programs.
Proc. ACM Program. Lang., 8(ICFP), aug 2024.

[BDG+14] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial, pages 146–166. Springer
International Publishing, Cham, 2014.

[BEG+17] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. Proving expected sensitivity of probabilistic programs. Proc. ACM Pro-
gram. Lang., 2(POPL), dec 2017.

[BGG+16] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. Proving differential privacy via probabilistic couplings. In Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,
page 749–758, New York, NY, USA, 2016. Association for Computing Machinery.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certi-
fication of code-based cryptographic proofs. SIGPLAN Not., 44(1):90–101, jan
2009.

[BKOZB12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Prob-
abilistic relational reasoning for differential privacy. SIGPLAN Not., 47(1):97–110,
jan 2012.

[BLM15] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-
friendly library of real analysis for coq. Math. Comput. Sci., 9(1):41–62, 2015.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large
ordered indices. Acta Informatica, 1:173–189, 1972.

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the se-
curity of triple encryption. IACR Cryptol. ePrint Arch., page 331, 2004.

[GAH+24] Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph
Tassarotti, and Lars Birkedal. Asynchronous probabilistic couplings in higher-
order separation logic. Proc. ACM Program. Lang., 8(POPL):753–784, 2024.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

[HLA+24] Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede
Gregersen, Joseph Tassarotti, and Lars Birkedal. Approximate relational rea-
soning for higher-order probabilistic programs, 2024.

4

Approxis Haselwarter, Li, Aguirre, Gregersen, Tassarotti, Birkedal

[HWKS98] Chris Hall, David A. Wagner, John Kelsey, and Bruce Schneier. Building prfs
from prps. In Advances in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Pro-
ceedings, pages 370–389, 1998.

[JKJ+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. J. Funct. Program., 28:e20, 2018.

[Tea24] The Coq Development Team. The Coq Proof Assistant, June 2024.

5

Probably: A language with stochastic let-bindings

Stian Øverby1 and Joachim Tilsted Kristensen2

1 Department of Informatics, University of Oslo Oslo, Norway stiaov@ifi.uio.no
2 Department of Informatics, University of Oslo Oslo, Norway joachkr@ifi.uio.no

Abstract

Probabilistic programming languages can be used for specifying experiments as com-
puter programs. We address the problem of computing the underlying probability dis-
tribution of a small toy programming language with stochastic let bindings. Our main
contribution is to equip the language with probability distribution in both terms and type
system, so that we can reason about probabilistic computations.

Contents

1 Introduction 1

2 Probably : The language stuff 2
2.1 Probably by example . 3
2.2 Formalization of Probably . 4

3 The path forward 6

4 Background and related work 7

1 Introduction

Rather than binding a specific value, discrete stochastic variables bind the outcome of observing
an experiment, such as flipping a coin or measuring the number of packets dropped in a network.

In the context of this paper, we use the word experiment to mean any non-deterministic
program that has a well-defined set of possible outcomes, known as the sample space. In that
sense, executing a program corresponds to performing an experiment.

During such experiments, we are interested in the probability of an event (a subset of all
possible outcomes) occurring. It is generally assumed that events come from a distribution,
that is, a pair (S,P) consisting of a sample space S and a function P : S → [0, 1] that assigns
probabilities to its members. We say that an event occurs if the outcome of an experiment is a
member of that event [1].

A probabilistic programming language, is a language in which programs express experi-
ments. Meaning that they have stochastic bindings and a way of observing their outcomes.
The experiments one can express in such a language implicitly specify a sample space S ′, and
the problem of inference is to decide a function P ′ that describe the distribution (S ′,P ′).

In this work, we want to allow exact inference through a distribution decorated type system
that the programmer can query. And, we want to provide the guarantee, that sampling (running
the experiment/program) yields values according to the inferred distribution.

By decorating each term with distributions, inference can be done by defining what it
means to combine the distribution of each term. We explore this approach with the following
contributions:

Probably Øverby and Kristensen

• We give the syntax of a probabilistic programming language Probably (see section 2),
and its sampling and semantics (what it means to perform an experiment).

• We suggest a type system decorated with distributions, that allow exact inference for
Probably (see section 2.2).

2 Probably : The language stuff

A program in Probably is the specification of an experiment. Running the program corresponds
to conducting that experiment, which yields the outcome we observe. The syntax for programs
is similar to the REC language from FSoPL [7]. That is a program is a term, and the syntax
for terms can be found in Figure 2. A term can be a number n, a boolean value, a variable, an
operation on terms, a function, a function application or a conditional. Finally, a term can be
a stochastic let binding.

The stochastic let binding introduces non-determinism by binding outcomes of sampling
a uniform distribution over some type τ⃗ . Furthermore, since the uniform distribution is not
well-defined on all domains the type is restricted to a size type τ⃗ , which we will detail in
Section 2.2.1. Inference of probability distributions happens through a combination of type
inference, and syntactic composition of terms to determine some probability function.

Probably is deliberately a minimal language. Some terms and types present in general
purpose languages are not included. A small language allows us to clearly focus our attention
to the interesting ideas of how to reason about experiments, and makes it easier to deal with
proofs. Our language is primarily created to prove a point, and not as a industry tool.

Probably does not have a recursive construct at this point. We plan to support recursion
in later iterations of the language, but doing so require us to solve inference problems related
to unbounded recursion that will be worthy of its own paper.

Logical and(&&), or(||) and equality(==) are syntactic sugar for some combinations of
conditionals. We want to keep the language simple to make proving things about our programs
easier in the future.

d ::= uniform τ⃗ (uniform dist over size type)

Figure 1: Syntax of distributions

2

Probably Øverby and Kristensen

t ::= n (num literal)

| true (bool literal)

| false (bool literal)

| x (var)

| t0 + t1 (addition expr)

| t0 ≤ t1 (leq expr)

| λx.t0 (lambda expr)

| t0t1 (function application)

| if t0 then t1 else t2 (conditional expr)

| let x ∼ d in t0 (stochastic let expr)

Figure 2: syntax of terms

J t1 && t2 K ::= if t1 then t2 else false

J t1 ∥ t2 K ::= if t1 then true else t2

J t1 == t2 K ::= t1 ≤ t2 && t2 ≤ t1

Figure 3: syntactic sugar

2.1 Probably by example

Let us try to model the behavior of insert of a hash map. Since the elements are arbitrary, and
we assume we have a good hash function that evenly distributes the elements, we can represent
the resulting hash as picking an element from a uniform distribution of 15 unique elements.

let x ~ (uniform int 1 15) in

let y ~ (uniform int 1 15) in

x == y

λ> false

Listing 1: Example program 1

In example program 1, the experiment yields the outcome false since the two hashes were
different. By repeating the experiment, we could get the same result, but at some point it
should produce true. But how likely is our program to produce true? We certainty prefer that
the probability of collisions of our hashing function to be reasonably low, so that we could avoid
handling collisions as often as possible. Luckily for us, Probably provides a way of answering
these type of questions.

3

Probably Øverby and Kristensen

2.2 Formalization of Probably

Every term is decorated with a distribution type. A distribution type τ̂ is a tuple (τ⃗ , p̂) of a size
type τ⃗ and a collection of probability functions p̂ that assign probabilities to specialized forms
of events. It is called a distribution type because the two components describe a distribution,
well enough to answer certain kinds of queries. τ⃗ represents the possible outcomes of a given
experiment, while p̂ provide answers to various simple queries, such as “what is the probability
of the outcome being less than 7”, and the possible queries are those that can be achieved
through the composition of such.

Size types have judgments rules (section 2.2.2), while probability functions have denotational
semantics (section 2.2.3).

τ̂ ::= τ⃗ , p̂

τ⃗ ::= int n m

| bool
| τ⃗0 → τ⃗1

Figure 4: Syntax of distribution types (τ̂) and size types (τ⃗)

2.2.1 Size types

A size type τ⃗ is a simple type τ confided by a size. The syntax of size types can be found
in figure 4. A size type can either be an integer with an inclusive lower and upper bound, a
boolean, or a function type that maps a size type to any other size type. The size of an integer
type is 1 more than its upper bound subtracted by its lower bound, the size of the boolean type
is 2, and the size of a function type τ⃗1 → τ⃗2 is |τ⃗2||τ⃗1|.

Size types completely avoid the issue of attempting to uniformly sample from an infinite
sample space. As an example, let us try to sample a value from the uniform distribution of
integers. The probability of sampling a number is equal to the cardinality of the occurrences
of the number, divided by the cardinality of the type. Since the cardinality of the integer type
is ∞, the probability of sampling any number will always be 0.

2.2.2 Judgement rules of size types

Judgment rules decides types of terms, and therefore their sample space. The judgment rules
are similar to traditional functional languages, with the main difference being that they consider
the size of the types.

All judgments for typing atomic terms with size types is an adaptation of the judgement
rules for simple types. The only difference, is that T-NUM sets a lower and upper bound equal
to its own value. The rules for functions, function application, ≤-expresssion and let-expressions
are more or less equivalent to that of their simple type counter-part.

The judgement rule for addition combines the bounds of two sized integers in a clever way.
The new lower bound is equal to the sum of the two smallest numbers of each sized integer,
which corresponds to their lower bound. Equivalently, the new upper bound is the sum of the
two upper bounds.

4

Probably Øverby and Kristensen

The judgment rule of conditionals depends on the probability function of its predicate. If the
predicate is decorated with a boolean distribution that is certain to pick a specific truth value,
the sample space can be reduced to that of the branch that will be chosen with probability 1.
Otherwise, the domain is the union of the sample space of both branches.

Notice that sized integers are only considered to be of same type if they share the exact same
size. This is not very useful, and we want to introduce subtyping in future work. Subtyping is
not further discussed in this extended abstract.

T-NUM :
Γ ⊢ n : int n n

T-TRUE :
Γ ⊢ true : bool

T-FALSE :
Γ ⊢ false : bool

T-VAR :
Γ ⊢ x : τ⃗

Γ(x) = τ⃗

T-PLUS :
Γ ⊢ t0 : int n1 m1 Γ ⊢ t1 : int n2 m2

Γ ⊢ t0 + t1 : int (n1 + n2) (m1 +m2)

T-LEQ :
Γ ⊢ t0 : int n1 m1 Γ ⊢ t1 : int n2 m2

Γ ⊢ t0 ≤ t1 : bool

T-IF-NUM :
Γ ⊢ t0 : bool Γ ⊢ t1 : int n1 m1 Γ ⊢ t2 : int n2 m2

Γ ⊢ if t0 then t1 else t2 : τ⃗

τ⃗ =





int n1 m1 J t0 Kbool(true) == 1

int n2 m2 J t0 Kbool(false) == 1

int min(n1, n2) max(m1,m2) otherwise

T-IF-BOOL :
Γ ⊢ t0 : bool Γ ⊢ t1 : bool Γ ⊢ t2 : bool

Γ ⊢ if t0 then t1 else t2 : bool

T-IF-LAM :
Γ ⊢ t0 : bool Γ ⊢ t1 : τ⃗1 → τ⃗2 Γ ⊢ t2 : τ⃗1 → τ⃗2

Γ ⊢ if t0 then t1 else t2 : τ⃗1 → τ⃗2

T-LET :
Γ[x → τ⃗1] ⊢ t : τ⃗2

Γ ⊢ let x ∼ uniform τ⃗1 in t : τ⃗2

T-LAM :
Γ[x → τ⃗1] ⊢ t : τ⃗2
Γ ⊢ λx.t : τ⃗1 → τ⃗2

T-APP :
Γ ⊢ t1 : τ⃗1 → τ⃗2 Γ ⊢ t2 : τ⃗1

Γ ⊢ t1t2 : τ⃗2

Figure 5: Typing rules

2.2.3 Denotional semantics of probability functions

Denotational semantics allow us to specify how to derive the probability functions of our pro-
gram. Every atomic term (numbers and booleans) has a predefined probability function, while
composed terms has rules for how to compose their own probability functions from their sub-
terms.

5

Probably Øverby and Kristensen

We define a function J · Kτ⃗ by induction on the syntax of our programming language. This
particular function is the “equals function”, a function used to answer what the probability
of a value being equal to the outcome of an experiment. Be aware that some of the queries
have large overhead, in particular ≤. Assume an arithmetic expression t1 + t2 where the sub-
expressions has type τ⃗1 and τ⃗2 respectively. The query requires every member of τ⃗1 to be paired
and compared with every member of τ⃗2, resulting in a complexity of O(|τ⃗1| · |τ⃗2|). Sadly, with
large types this might be incredibly slow.

In the future, we want to define a collection of functions that are all optimized to answer
specific queries and avoiding expensive operations. By defining such functions, we can compose
these functions to answer more complex queries.

J v Kτ⃗ (w) =
{
1 w = v

0 otherwise

J x Kτ⃗ (v) =
{

1
|τ⃗ | v ∈ E(τ⃗)

0 otherwise

J t1 + t2 Kint (m1+n1) (m2+n2)(k) =
m∑

i=n

J t1 Kint m1 m2
(x− i) ·

J t2 Kint n1 n2
(i)

J t1 ≤ t2 Kbool(true) =
∑

i≤j∧⟨i,j⟩∈E(τ⃗1)×E(τ⃗2)

J t1 Kτ⃗1(i) ·
J t2 Kτ⃗2(j)

J t1 ≤ t2 Kbool(false) = 1− J t1 ≤ t2 Kbool(true)

J if t1 then t2 else t3 Kτ⃗ (x) =
J t1 Kbool(true) · J t2 Kτ⃗ (x) +
J t1 Kbool(false) · J t3 Kτ⃗ (x)

J λx.t1 Kτ⃗1→τ⃗2(λy.t2) =




1

∧

t∈E(τ⃗1)

t1[x/t1] = t2[y/t1]

0 otherwise

J (λx.t1) t2 Kτ⃗ (v) = J t1[x/t2] Kτ⃗ (v)
J Let x ∼ uniform τ⃗1 in t Kτ⃗2(v) = J t Kτ⃗2(v)

Helper function:
∗ E(τ⃗) = {t|t ∈ τ⃗}

Figure 6: Denotational semantics of probability function

3 The path forward

In conclusion, Probably is a probabilistic programming language designed to model and do
experiments. By supporting stochastic let-bindings and having a type system decorated with
distributions, it should allow for precise reasoning about the probabilistic behavior of exper-
iments. Our current work paves the way for further exploration of what it means to have a
language that deals with stochastic variables, and how to design languages that support them.
For a full paper we want to explore optimized probability functions and subtyping. Hopefully,
Probably will enable us to get greater insight into modeling complex stochastic computations.

6

Probably Øverby and Kristensen

4 Background and related work

A probability distribution is a mathematical function P that distributes a total probability of 1
among each member ω of a probability space Ω. The probability P (ω) must be a nonnegative
real number, and the condition

∑

ω∈Ω
P (ω) = 1 (1)

must hold for every discrete probability space [3].
Probabilistic programming is about doing Bayesian inference using the tools of computer

scientists: denoting probabilistic models in a programming language, and using statistical in-
ference algorithms for computing the true posterior distribution of observed program output
[6].

A probabilistic programming language should assist encoding complex probability distribu-
tions by writing computer programs. This is done with a combination of familiar programming
language constructs, like conditionals and loops, and some additional ones making it easier to
work with probability.

Probability distributions form a monad [2], allowing for a simple model for composing
distributions. A distribution can be composed with another using the bind operator, and
interesting queries can be answered through the distribution. Interesting queries might be the
probability of a term yielding a specific value when evaluated, or even the expected value [5].

Probably can be viewed as a generalization of Troll [4], a programming language for
specifying dice-rolls. Troll has stochastic let bindings that bind variables to the outcome of
rolling an n sided die. The language has semantics for both rolling dice, and inspecting the
probability distribution of a specified dice roll. The distributions are represented as finite maps.
An eagerly evaluated map of all possible outcomes to their probability does not scale well to
larger domains than dice. However, Probably uses a similar underlying map structure as Troll,
with some additional information to avoid evaluating the complete map.

References

[1] Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability. CRC Press, 2015.

[2] Martin Erwig and Steve Kollmansberger. Functional pearls: Probabilistic functional programming
in haskell. J. Funct. Program., 16(1):21–34, January 2006.

[3] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley, Massachusetts, 2008.

[4] Torben Ægidius Mogensen. Troll, a language for specifying dice-rolls. In Proceedings of the 2009
ACM Symposium on Applied Computing, SAC ’09, page 1910–1915, New York, NY, USA, 2009.
Association for Computing Machinery.

[5] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability distribu-
tions. SIGPLAN Not., 37(1):154–165, January 2002.

[6] Jan-Willem van de Meent, Brooks Page, Hongseok Yang, and Frank Wood. An Introduction to
Probabilistic Programming. 2021.

[7] Glynn Winskel. The Formal Semantics of Programming Languages. The MIT Press, London, 1994.

7

Modelling a Probabilistic Programming Language in

Clocked Cubical Type Theory ∗

Philipp Jan Andries Stassen1, Rasmus Ejlers Møgelberg2, Maaike Zwart3,
Alejandro Aguirre4, and Lars Birkedal5

1 Aarhus University, Aarhus, Denmark
stassen@cs.au.dk

2 IT University of Copenhagen, Copenhagen, Denmark
mogel@itu.dk

3 IT University of Copenhagen, Copenhagen, Denmark
mazw@itu.dk

4 Aarhus University, Aarhus, Denmark
alejandro@cs.au.dk

5 Aarhus University, Aarhus, Denmark
birkedal@cs.au.dk

Abstract

We show how to use a metalanguage with guarded recursion to construct both deno-
tational and operational semantics for a programming language combining recursive types
and finite probabilistic choice. We construct a relation between the two and show that it
is adequate for reasoning about contextual equivalence. Examples include the encoding of
a fair coin from an unfair one, and the equivalence of two random walks.

1 Introduction

Contextual equivalence is often the right notion of equivalence for programs, but can be hard to
reason about. Various techniques have been constructed for this purpose, including denotational
semantics, models based on operational semantics, and bisimulation techniques. When the
object language has recursion, the traditional approach is to use domain theory, but this can
be quite challenging when the language also has computational effects such as probabilistic
choice or advanced notions of store. More recently, step-indexed techniques have been applied
especially to operational models. However, the explicit steps often obscure the picture, and
the appealing simple idea of denotational semantics, that types are just sets and terms just
functions, appears to be lost.

2 Guarded Recursion

Guarded recursion is an abstract approach to step-indexing. The idea is to work in a meta-
language capturing the essence of the step-indexed models using a modal type constructor ▷
(pronounced ‘later’) to encode a notion of step, a delay operation next : A → ▷A, a fixed point

∗This work was supported in part by the Independent Research Fund Denmark grant number 2032-00134B,
in part by a Villum Investigator grant (no. 25804), Center for Basic Research in Program Verification (CPV),
from the VILLUM Foundation, and in part by the European Union (ERC, CHORDS, 101096090). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

Modelling a Probabilistic Programming Language in CCTT Stassen, Møgelberg, Zwart, Aguirre, and Birkedal

operator fix : (▷A → A) → A, as well as guarded recursive types, i.e., solutions to equations such
as X ≃ A+ ▷X, where the recursive type variable only appears under a ▷. These construction
can be justified by a semantic model like the topos of trees [1], but the metalanguage hides
the intricacies of the model construction from the user, revealing a simple language for the
modelling task at hand.

In this talk, the particular meta-language we use is Clocked Cubical Type Theory
(CCTT) [12]. This is a dependent type theory combining features of multiclocked guarded
recursion with Cubical Type Theory [4], which has been implemented in an experimental ver-
sion of Cubical Agda1, although the results presented here have not been formalised in that.
The word multiclocked means that modality ▷κ is indexed by a clock κ, which can be quantified
over to encode coinductive types. For example, one can define the guarded delay monad Lκ(−)
by defining LκA to be the unique solution to the equation LκA ≃ A + ▷κ(LκA). The clock
κ can then be universally quantified to yield the delay monad L∀A ≜ ∀κ.LκA, which can be
proved to be the coinductive solution to

L∀A ≃ A+ L∀A (1)

The delay monad L∀ has previously been used to model recursion in type theory [3], but unlike
L∀, the guarded version allows for the definition of a fixed point operator of type

((A → LκB) → (A → LκB)) → A → LκB.

This can be used, e.g., to give very simple denotational semantics to programming languages
with recursive terms, in which the function type is interpreted using the standard (call-by-
value) monadic interpretation: Jσ → τKκ ≜ JσKκ → LκJτKκ. Quantification over clocks allows
for programs to be run without delays in the form of ▷κ. For example, a closed program of type
Nat is interpreted as an element of type Lκ(N), for any κ. By quantifying over κ, one obtains
an element of L∀N, which can then be run by the term

run : N → L∀A → A+ 1

which unfolds its second argument using (1) the number of times given by the first argument.
Similarly, one can define an operational semantics as functions of type

evalκ : {σ : Ty} → Tmσ → Lκ(Valσ)

eval : {σ : Ty} → Tmσ → L∀(Valσ)

where Tmσ is the type of terms of σ, and Valσ is the type of values of type σ. The second of
these is defined simply by abstracting over a clock in the first: evalM ≜ Λκ.evalκ M .

3 Modelling probabilistic FPC

In this talk we extend the above idea to model Probabilistic FPC, a call-by-value lambda
calculus with recursive types and a binary probabilistic choice operator. In order to do so, let
D be the finite distributions monad, which can be defined in CCTT as a higher inductive type
using constructors for dirac distributions and convex combinations of distributions as well as
paths for idempotency, commutativity and associativity of convex combinations. Define the
guarded convex delay monad Dκ by the guarded type equation

DκA ≃ D(A+ ▷κ(DκA)).

1https://github.com/agda/guarded

2

Modelling a Probabilistic Programming Language in CCTT Stassen, Møgelberg, Zwart, Aguirre, and Birkedal

An element of DκA is a finite distribution of elements that are either values of type A, or com-
putations that can run for one more step. For example, one can define a geometric distribution

geoκp : N → DκN

geoκp n ≜ (δκn)⊕p step
κ(nextκ(geoκp (n+ 1)))

where δκ : A → DκA and stepκ : ▷κ(DκA) → DκA are the obvious inclusions using the dirac
distributions, and ⊕p is the convex combination of distributions. The term geoκp is a recursive

term that can be defined using the fixed point operator fix. The type D∀A ≜ ∀κ.DκA is the
coinductive solution to D∀A ≃ D(A+ D∀A).

The denotational and operational semantics can then be defined by extending the above
idea from using Lκ to Dκ. The interpretation of recursive types is by using guarded recursive
types

JµX.τKκ ≜ ▷κJτ [µX.τ/X]Kκ
We prove an adequacy result by constructing relations between syntax and semantics

⪯κ,Val
σ : JσKκ → Valσ → Prop

⪯κ,Tm
σ : DκJσKκ → D∀(Valσ) → Prop

by induction on the type σ. In the case of recursive types, this relation is defined by guarded
recursion. We show that this relation is adequate for reasoning about contextual refinement,
in the sense that if the denotation of M is related to evalN , then N contextually refines M .
The relation includes weak bisimilarity, so can be used to prove equivalence of programs that
compute the same result in a different number of steps. Such programs do not have equal
denotations since the model counts steps using the ▷ modality.

We give examples of how to use the relation ⪯κ,Tm
σ to prove equivalences of probabilistic

programs, including the encoding of a fair coin using an unfair coin, and the equivalence of two
random walks. All of these examples use guarded recursion as part of the reasoning.

4 Conclusion

Probabilistic programming languages have received much attention lately, and there are other
works on denotational semantics [11, 15, 9, 8, 7], operational techniques [10, 2, 6, 16, 17], and
bisimulations [5, 13] The contribution of the present work is to show how working at the high
level of abstraction that the metalanguage provides, can make the construction of denotational
semantics fairly easy, and allow the user to focus on the essentials, as illustrated by the relative
simplicity of the examples.

This abstract is based on a recent preprint [14] available on the arXiv.

References

[1] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods Comput.
Sci., 8(4), 2012.

[2] Ales Bizjak and Lars Birkedal. Step-indexed logical relations for probability. In Andrew M. Pitts,
editor, Foundations of Software Science and Computation Structures - 18th International Con-
ference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9034 of Lecture
Notes in Computer Science, pages 279–294. Springer, 2015.

3

Modelling a Probabilistic Programming Language in CCTT Stassen, Møgelberg, Zwart, Aguirre, and Birkedal

[3] Venanzio Capretta. General recursion via coinductive types. Log. Methods Comput. Sci., 1(2),
2005.

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. FLAP, 4(10):3127–3170, 2017.

[5] Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and call-by-
value λ-calculi. In Zhong Shao, editor, Programming Languages and Systems - 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
volume 8410 of Lecture Notes in Computer Science, pages 209–228. Springer, 2014.

[6] Ryan Culpepper and Andrew Cobb. Contextual equivalence for probabilistic programs with con-
tinuous random variables and scoring. In Hongseok Yang, editor, Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 368–392.
Springer, 2017.

[7] Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs with con-
ditioning. Proc. ACM Program. Lang., 4(POPL):57:1–57:29, 2020.

[8] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic PCF.
J. ACM, 65(4):23:1–23:44, 2018.

[9] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for higher-
order probability theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

[10] Patricia Johann, Alex Simpson, and Janis Voigtländer. A generic operational metatheory for
algebraic effects. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 209–218. IEEE Computer
Society, 2010.

[11] C. Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California,
USA, June 5-8, 1989, pages 186–195. IEEE Computer Society, 1989.

[12] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. Greatest hits:
Higher inductive types in coinductive definitions via induction under clocks. In Christel Baier
and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, Haifa, Israel, August 2 - 5, 2022, pages 42:1–42:13. ACM, 2022.

[13] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for higher-
order probabilistic functional programs. In Suresh Jagannathan and Peter Sewell, editors, The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, pages 297–308. ACM, 2014.

[14] Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Zwart, Alejandro Aguirre, and Lars Birkedal.
Modelling recursion and probabilistic choice in guarded type theory. CoRR, abs/2408.04455, 2024.

[15] Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. Proc. ACM Program. Lang., 3(POPL):36:1–36:29, 2019.

[16] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. Contextual
equivalence for a probabilistic language with continuous random variables and recursion. Proc.
ACM Program. Lang., 2(ICFP):87:1–87:30, 2018.

[17] Yizhou Zhang and Nada Amin. Reasoning about ”reasoning about reasoning”: semantics and
contextual equivalence for probabilistic programs with nested queries and recursion. Proc. ACM
Program. Lang., 6(POPL):1–28, 2022.

4

A type system to Ensure Non-Interference in ReScript

Benjamin Clausen Bennetzen1, Emilie Sonne Steinmann2, Loke Walsted3,
Nikolaj Rossander Kristensen4, Peter Buus Steffensen5, and Daniel Vang Kleist6

Aalborg University, Aalborg, Nordjylland, Danmark
{bbenne201,estein192,lwalst203,nrkr204,psteff195,dkleis206}@student.aau.dk

1 Introduction

The property of non-interference was defined as early as 1982 by Goguen and Meseguer [2], and
can be analyzed through information flow analysis. In their work, they present a formal notion
for describing security policies and models.

Ensuring non-interference is especially important in web-based services, as these can easily
be accessed by unauthorized observers. The most commonly used language throughout the
last couple of years for development is JavaScript [5, 6, 7], and thus several solutions have been
developed for performing information flow analysis on JavaScript code, as seen in, e.g., the work
of Just et al. from 2011 [4] and Hedin, Bello, and Sabelfeld’s work from 2016 [3]. Both articles
suggest mechanisms for dynamic (run-time) information flow analysis, though recognize that
static (compile-time) analysis is required to analyze implicit information flows. Information
flow is generally categorized into two types: explicit and implicit [3]. Explicit information flow
covers situations, where data is copied directly, e.g., via an assignment. Implicit information
flow is slightly more complicated, as it describes situations where information is used to control
program flow. Here, information about confidential data is indirectly revealed, as confidential
data controls public aspects of the program behavior. We denote confidential data as h, and
public data as l, for the code examples.

1 let h = true
2 let l = if (h) { 2 } else { 3 }

Listing 1: Implicitly revealing the value of h through a conditional assignment to l.

Listing 1 showcases an example of information flow we want to avoid in order to achieve non-
interference.

We will look at a more recently developed programming language called ReScript where a
non-interferent information flow could be relevant.

ReScript is a functional programming language that compiles to JavaScript, and its devel-
opers claim ReScript to be the fastest build system on the web [9]. As the language is still quite
new, information flow analysis for ReScript is yet to be developed.

An interesting aspect of ReScript is that some imperative features are included in the other-
wise functional programming language. These complicate the analysis of non-interference, e.g.,
through the possibility to use ref to create mutable bindings. This allows for other ways to
create information flow as seen in Listing 2 and Listing 3.

Non-Interference in ReScript Bennetzen, Steinmann, Walsted, Kristensen, Steffensen and Kleist

1 let h = ref(2)
2 let l = h

Listing 2: Leaking confidential information from variable h to public variable l by
copying the reference to the location of the value of h.

1 let l = ref(2)
2 let h = l
3 h := 4

Listing 3: Leaking confidential data by copying the reference of a public variable, l,
to a confidential variable, h, and then updating the value of h.

In both cases, the confidential and public variables end up pointing to the same memory,
which means that the confidential information in h is accessible through the public variable l.
This clearly breaks with non-interference. To deal with this, a solution must be able to control
references.

In [8], Sabelfeld and Myers describe how a type system is a natural way to implement
information flow analysis, as existing type systems can easily be extended with security levels.
As with many properties, non-interference is an undecidable problem. Therefore, any type
system aiming to capture non-interference will be an approximation.

We will introduce a type system for ReScript similar to the security type system in [8],
with the aim of ensuring non-interference for a subset of ReScript. To prove that this type
system ensures non-interference, we have developed a proof of soundness that shows that if
an expression is typeable it is also non-interferent. This method of proving non-interference is
similar to the method by Volpano et al. in [10].

2 The Information Flow Type-system

Type judgments are of the form Γ, pc ⊢ e : t1 @t2 � Γ ′, read as: Given a type environment Γ
and a security level pc, then the expression e has the type t1, with the lowest side effect being
t2, and produce a new type environment Γ′. Here, type environments are partial functions
from variables to types (Var ⇀ T). A type can be a security-level, that being either High
or Low. Confidential data should be typed as High, and public data should be typed as Low.
Additionally pc ∈ {Low, High}, e ∈ Exp and t1, t2 ∈ T. pc represents the security level of the
context, meaning that if pc = High, then a High value controls the program flow, when e is
evaluated.

An example of a type-rule is given by:

(Let-n)
Γ, pc ⊢ e : t2 @t3 � Γ1

Γ, pc ⊢ Let xt1 = e : Low@t4 � Γ [x → t1]

t1, t2 ∈ {Low, High}
t1 ⊒ t2 and t1 ⊒ pc

t4 = ⊓{t3, t1}
Here, we ensure that the data that gets assigned to a variable x, must be either of a lower

security level or of the same security level as the variable itself. This ensures that there is
no explicit information flow, where highly secure data gets assigned to a variable used for low
security data. For all type rules we refer to the full paper [1].

Our type system ensures that all well-typed expressions maintain non-interference.

2

Non-Interference in ReScript Bennetzen, Steinmann, Walsted, Kristensen, Steffensen and Kleist

Definition 2.4 (Non-interference). Consider e ∈ Exp and Γ, Γ′ ∈ TypeEnviroments. We say
that e upholds the non-interference property under Γ if the following condition holds, for any
given pair of states s1, s2.

if Γ ⊢ s1 =Low s2

and ⟨e, s1⟩ → ⟨v1, s′
1⟩

and ⟨e, s2⟩ → ⟨v2, s′
2⟩

then Γ′ ⊢ s′
1 =Low s′

2

The following definition precisely defines the meaning of being well-typed in the context of
this paper:

Definition 2.5 (Well-typed). An expression e is well-typed in regards to a type environment Γ
and a security level pc, if: Γ, pc ⊢ e : t1 @t2 � Γ ′

Our proof of soundness states that any given well-typed expression will maintain non-
interference. This means, that if an expression can be typed with our type rules, there is
no information flow from High variables to Low variables. For the full proof of every type-rule
we refer to the full paper [1].

3 Conclusion

We have explored the integration of a type system, that ensures the non-interference property,
within a subset of the programming language ReScript. A proof of soundness was used to
validate that the type system ensures that every well-typed expression is non-interferent. As
an addition, the type system has also been implemented as a type checker in Haskell. While
the type system does enhance the security of programs, it also imposes limitations in the way
you can use certain language constructs. An example of this is the inability of if-expressions to
evaluate to anything other than Low or High.

As the type system only works for a subset of ReScript, the obvious extension would be
a type system that encompasses all of ReScript. Most notably, we are missing records, lists,
arrays, destructuring, switches and ”try-catch” constructs. Additionally, there is a significant
number of binary and unary operations currently missing, although their inclusion should be a
relatively straightforward extension.

Building on this, another place that merits attention is the simplicity of our security lev-
els. One could easily imagine scenarios where more complex security levels would be needed.
Consider as an example the management of exam materials in a university. In such a scenario,
students should not have access to exams before the scheduled date. Department heads should
have access exclusively to their department’s exams, while the university head should be able to
access all exams. A very useful extension would therefore be one where the security levels are a
lattice described by a set of formation rules, which allow for the vertical and lateral extension
of the lattice.

3

Non-Interference in ReScript Bennetzen, Steinmann, Walsted, Kristensen, Steffensen and Kleist

References

[1] Benjamin Clausen Bennetzen, Daniel Vang Kleist, Emilie Sonne Steinmann, Loke Walsted, Niko-
laj Rossander Kristensen, and Peter Buus Steffensen. A type system to ensure non-interference in
rescript. 2023.

[2] J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE Symposium
on Security and Privacy, pages 11–11, 1982.

[3] Daniela Hedin, Lucianoa Bello, and Andreia Sabelfeld. Information-flow security for javascript
and its apis. Journal of Computer Security, 24(2), 2016.

[4] Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer. Information flow analysis for
javascript. In Proceedings of the 1st ACM SIGPLAN International Workshop on Programming
Language and Systems Technologies for Internet Clients, PLASTIC ’11, New York, NY, USA,
2011. Association for Computing Machinery.

[5] Stack Overflow. Developer survey 2020, 2020. Accessed: 2024-09-04.

[6] Stack Overflow. Developer survey 2021, 2021. Accessed: 2024-09-04.

[7] Stack Overflow. Developer survey 2023, 2023. Accessed: 2024-09-04.

[8] A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003.

[9] ReScript Team. Rescript, n.d. ReScript Documentation, Accessed: 2024-09-04.

[10] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4, 08 2000.

4

Towards text extraction learning with regular expressions

extended with complement, intersection and lookarounds

Ksenija Kivojenko, Edwin Smagin, Ian Erik Varatalu, and Juhan Ernits

Tallinn University of Technology, Tallinn, Estonia
(kskivo|edsmag|ian.varatalu|juhan.ernits)@taltech.ee

1 Introduction

Learning regular expressions has various flavours. The task we focus on here is based on
inference of regular expressions for text extraction by (Bartoli, Lorenzo, Medvet, & Tarlao,
2016) which is accompanied by a dataset with text to be extracted clearly annotated. We show
how using a regular expression engine extended with intersection, complement and restricted
lookarounds (Varatalu, Veanes, & Ernits, 2024) makes learning more efficient over traditional
regex engines supporting concatenation, Kleene star and alteration. It is important to note that
the aim is to use the functionality of regular expressions beyond deterministic finite automata, as
there are ample examples of learning the latter. We are interested in learning regular expressions
that support zero-width lookaround assertions (Goyvaerts, 2024) for context. An example of
a lookaround for detecting author name in a bibtex entry might be (?<=author.*).* stating
that the string author must precede the matched text on the current line.

We refer the reader to (Bartoli et al., 2016) for an overview of how the text extraction
problem has evolved. We use the results from there as baseline. The regular expression evolution
rules are replaced with heuristic search for regexes supporting intersection, complement and
lookarounds interleaved with simplification and generalization steps.

For up-to-date context, inference of regular expressions has been used in the literature for
different tasks, which we group into two distinct categories (omitting active learning approaches,
which require user interaction and generation of regular expressions from natural language
descriptions accompanied by samples):

1. Existence of a match (positive/negative examples);

2. Context-aware substring extraction (finding match positions with lookarounds).

In the current work we concentrate on algorithmic learning of regular expression as opposed
to using large language models to generate candidate regular expressions.

1.1 Learning from positive and negative examples (IsMatch)

The first category of regular expression learning has received by far the most attention in the
literature, with tools centered around finding only the existence of a match. AlphaRegex (Lee,
So, & Oh, 2016) a tool with accompanying benchmark for synthesizing regular expressions from
positive and negative examples.

RFixer (Pan, Hu, Xu, & D’Antoni, 2019), takes an approach where given a regular expres-
sion and positive and negative examples, it produces a fix as small distance from the original
expression as possible which constitutes a repair.

(Chen, Wang, Ye, Durrett, & Dillig, 2020) propose a DSL for describing regular expressions.
As the authors encode regular expression constraints into SMT context, they support and use

intersection and (approximated) complement, but there is no support for lookarounds for text
extraction. The tool works on positive/negative examples given by the user.

(Kim, Hu, D’Antoni, & Reps, 2021) propose SemGuS, which can also be instantiated to
synthesize regular expressions from positive and negative examples.

(Li, Xu, Cao, Chen, Ge, Cheung, & Zhao, 2020) FlashRegex was developed for ReDos regex
generation. It is also based on learning from positive and negative examples by reducing the
ambiguity of these regexes and using SAT techniques.

(Valizadeh, Gorinski, Iacobacci, & Berger, 2024) propose the Regular Expression Inference
Challenge, a program optimization task of finding minimal regular expressions from examples,
which can be very efficiently solved on GPUs, as has been shown in (Valizadeh & Berger, 2023).

1.2 Context-aware substring extraction

The regexes learned for extraction tasks have semantic differences from those learned for match
existence tasks e.g. the pattern .*a.* is fundamentally indistinguishable from a for match
existence, as .* does not impose any additional existence constraints on its own. For match
extraction the former may retrieve a longer substring within the input.

For substring extraction tasks, the training data consists of marked regions of input, e.g.
extracting only a small relevant part within the original input.

(Bartoli et al., 2016) presents a genetic programming based approach to generating regular
expressions for text extraction from such marked examples. The tool is capable of synthesizing
regular expressions for both tasks, which it supports via lookaround assertions.

The substring extraction task has a much larger search space than match existence, but it
has extended capabilities as well. We argue that regular expressions for substring extraction
tasks can reach some capabilities similar to deep learning models like BERT (Devlin, Chang,
Lee, & Toutanova, 2019), which is designed with an attention mechanism for learning contextual
relations between words. The task of context-aware text extraction requires a similar attention
mechanism, which can be supported within regex syntax as lookarounds.

While the learning mechanism for tasks such as Text Summarization (e.g. marking the part
of text that answers the question), or Named Entity Recognition (e.g. labeling and classifying
individual parts of the input) is different from transformers, such as BERT (Devlin et al.,
2019), it makes little difference whether the result comes from a probabilistic source, or a large
dictionary of learned patterns, as both can be generalized or over-fitted the same.

We aim to show that intersection and complement in regular expressions have properties
well suited for inference and machine learning tasks, where the intersections make the pattern
modular and composable. A key difference of learning regexes this way, as opposed to neural
networks, is that the final learned regular expression can sustain a vastly higher throughput of
up to 1 GB/s on a single CPU thread.

2 Experiments

Our tool ExRegExEx excels at the substring extraction task, where we utilize heuristics com-
bined with constructs supported by the RE# engine (Varatalu et al., 2024) (Table 1), where
the wildcard * matches all strings. We illustrate the efficacy of our approach on context-aware
substring extraction by comparison to RegexGenerator++ (Bartoli et al., 2016), (see Table 3)
where having support for intersections and complement allows for shorter inference times and
overall more concise regexes learned. The File column of the Table 3 refers to the benchmark
task, len column to the length of the learned regular expressions in characters, the % to the

2

Table 1: Basic constructs and their meaning in the extended regex syntax in RE#.
Lookarounds Prefixes/Suffixes Other

(?<=R) * : preceded by R R * : starts with R *R * : contains R
(?<!R) * : not preceded by R ~(R *) : does not start with R ~(*R *) : does not contain R
*(?=R) : followed by R *R : ends with R R|S : either R or S
*(?!R) : not followed by R ~(*R) : does not end with R R&S : both R and S

Table 2: Advanced constructs in the extended regex syntax of RE#.
Regex Notes

Difference L ̸→ R L but not R (L&~R)
Implies (Negated Difference) L → R if L then R (~L|R)
XOR (Symmetric Difference) L⊕R exactly one of L, R (L&~R|~L&R)
XNOR (Neg. Symm. Diff.) L⊙R both or none of L, R (L&R|~L&~R)
Window (?<=L~(*R *)) * located in a window between L and R
Between (?<=L)~(*L|R *)(?=R) between the boundaries of L and R

proportion of samples covered by the resulting regular expression, and the Time column to
time taken to acquire the result. All experiments are run on a single thread. The fact that
RegexGenerator++ utilizes genetic programming means that it is not guaranteed to generate a
correct solution, which may often take a very long time to find, as is illustrated on the BibTeX
title and BibTeX author tasks in Table 3. Just as a check for validity, we also ran our algorithm
on AlphaRegex and FlashRegex benchmarks and achieved regexes matching the samples with
100% accuracy in the majority of cases with short run times. But the key benefit is in achieving
superior results in context aware string extraction learning tasks with utilizing a combination
of heuristic search for regular expressions and simplification steps.

Table 3: Regular expressions found by RegexGenerator++

RegexGenerator++ ExRegExEx
File len % Time len % Time

References Lead-Author.json 40 100 00:55:36 37 100 00:00:04
Bibtex Title.json 247 28.797 06:00:15 21 100 00:00:24

Bibtex Author.json 264 66,975 05:47:01 58 100 00:01:17
reduced.json 29 100 00:01:45 9 100 00:00:03

Web-HTML Heading.json - - - 35 100 00:00:22
Web-HTML Heading-Content.json - - - 155 100 00:03:39

2.1 Exotic constructs within regular expressions

A key feature of having intersection and complement within regex syntax, is that it makes
way for a whole effective boolean algebra of regexes, which allows programming constructs
such as if-then implication (→) or exclusive or (⊕) to be encoded entirely within regex syntax.
The RE# engine supports such constructs (see Table 2) without any search-time penalties,
which when paired with the modular nature of regex intersections, creates a framework that
could be competitive in the machine-learning space. Given the strong results in relatively little
computational time in Table 3, we are eager to see which similar tasks are suitable for regex
inference in the given framework.

3

References

Bartoli, A., Lorenzo, A. D., Medvet, E., & Tarlao, F. (2016). Inference of regular expressions
for text extraction from examples. IEEE Trans. Knowl. Data Eng., 28 (5), 1217–1230.

Chen, Q., Wang, X., Ye, X., Durrett, G., & Dillig, I. (2020). Multi-modal synthesis of regular
expressions. In Donaldson, A. F., & Torlak, E. (Eds.), Proceedings of the 41st ACM SIG-
PLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pp. 487–502. ACM.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Burstein, J., Doran, C., & Solorio,
T. (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
4171–4186. Association for Computational Linguistics.

Goyvaerts, J. (2024). Lookarounds.. https://www.regular-expressions.info/lookaround.
html.

Kim, J., Hu, Q., D’Antoni, L., & Reps, T. W. (2021). Semantics-guided synthesis. Proc. ACM
Program. Lang., 5 (POPL), 1–32.

Lee, M., So, S., & Oh, H. (2016). Synthesizing regular expressions from examples for intro-
ductory automata assignments. In Fischer, B., & Schaefer, I. (Eds.), Proceedings of the
2016 ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - November 1,
2016, pp. 70–80. ACM.

Li, Y., Xu, Z., Cao, J., Chen, H., Ge, T., Cheung, S., & Zhao, H. (2020). Flashregex: Deducing
anti-redos regexes from examples. In 35th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020,
pp. 659–671. IEEE.

Pan, R., Hu, Q., Xu, G., & D’Antoni, L. (2019). Automatic repair of regular expressions. Proc.
ACM Program. Lang., 3 (OOPSLA), 139:1–139:29.

Valizadeh, M., & Berger, M. (2023). Search-based regular expression inference on a GPU. Proc.
ACM Program. Lang., 7 (PLDI), 1317–1339.

Valizadeh, M., Gorinski, P. J., Iacobacci, I., & Berger, M. (2024). Correct and optimal: The
regular expression inference challenge. In Larson, K. (Ed.), Proceedings of the Thirty-
Third International Joint Conference on Artificial Intelligence, IJCAI-24, pp. 6486–6494.
International Joint Conferences on Artificial Intelligence Organization. Main Track.

Varatalu, I. E., Veanes, M., & Ernits, J.-P. (2024). Re#: High performance derivative-based
regex matching with intersection, complement and restricted lookarounds.. Conditionally
accepted to POPL 2025, https://doi.org/10.48550/arXiv.2407.20479.

4

Cost Analysis for Import and Export Using an Abstract

Machine

Benjamin Clausen Bennetzen1, Emilie Sonne Steinmann2, Loke Walsted3,
Nikolaj Rossander Kristensen4, Peter Buus Steffensen5, and Daniel Vang Kleist6

Aalborg University, Aalborg, Nordjylland, Danmark
{bbenne201,estein192,lwalst203,nrkr204,psteff195,dkleis206}@student.aau.dk

1 Introduction

When working in web design, many components used by the programmer or designer are im-
ported from other sources. These dependencies can have their own dependencies, and thereby
vary in size. Therefore, the computational cost of inclusion of a dependency can also vary. This
becomes an issue, when for instance a program, such as a web-based design tool, has to oper-
ate at 60 frames pr. second for an optimal user experience. This smooth experience could be
challenged when including a new element that is not already imported and is computationally
expensive. Analyzing the cost of such an import could help prove what impact it has on the
experience. In this paper we examine a method that could be used for cost analysis.

A lot of previous work has been done tackling similar problems. Avanzini and Lago [1]
introduces a method for complexity analysis for a functional programming language using a
type system and Hoffmann et al. [5] gives a system for finding the worst-case resource bound.

One method that is recurring in some of these analyses is using a type system with sized
types. Sized types as introduced by Hughes et al. [7] were used for proving properties such as
liveness in reactive systems. This was later extended by Hughes and Pareto [6] to approximate
stack and heap cost. Sized types are useful as they can be used to carry information about
objects. We will make use sized types to carry information about the computational cost of
files.

We will show an analysis method for a subset of JavaScript XML inspired by Baillot and
Ghyselen [2], where they examines a method for finding the time complexity for a process in the
π-calculus, by introducing semantics using a tick-notation to denote operations with an impact
on the time complexity, as well as a type system using sized types. Diehl et al. [4] give an
overview of different abstract machines and how they are used. We will introduce an abstract
machine similar to the one introduced by Montenegro et al. [9]. Our abstract machine is in
the style of Landin’s SECD machine [8]. We will annotate its transitions with a cost using the
tick-notation. In our cost model, we are interested in import and export so we will use the tick
to mark reductions that will have an impact on this. We will also use tick to notify writing to
memory, to show that programs without import and export also might have a substantial cost.

2 Abstract Machine

The abstract machine can be described using a runtime syntax, a machine configuration and a
set of reduction rules. The machine configuration can be defined as in definition 2.1.

Definition 2.1 (Machine Configuration). The configuration of the abstract machine is defined
as a 6-tuple:

Non-Interference in ReScript Bennetzen, Steinmann, Walsted, Kristensen, Steffensen and Kleist

(InstructionStack, fg, ls, es, vs, ss)

Where InstructionStack is the set that ranges over all the possible formations of the runtime
syntax. fg (file getter) is a partial function from identifiers to source files. ls (locals) is a partial
function from a variable identifier and a scope identifier to a runtime value. es (exports) is a
partial function from a variable identifier to a runtime value. vs (values) is a stack of runtime
values. ss (scope stack) is a stack of scope identifiers. For a more formal introduction to these
we refer to the full paper [3].

Every reduction
c⇒ has an associated cost c. As an example,

0⇒ denotes a reduction with a
cost of 0. An example of a reduction rule can be seen below.

⟨
→
id f :: rest, fg, ls, es, vs, ss⟩ 2⇒ ⟨fg(f) :: PopScope ::

BindSelected id1 :: · · · :: BindSelected idn :: EmptyExports :: rest, fg, ls, es, f :: ss⟩

This reduction rule describes how when one imports a list of variables from another file, it
can be decomposed into the execution of said file, followed by the binding of a subset of the files
exported variables to the local scope. One can read the reduction rule as follows: Given that a
list of identifiers and a file name identifier is on top of the instruction stack, the configuration
can be reduced with a cost of 2. The configuration will be reduced such that the instruction
stack now contains the contents of the file f , a PopScope command, a list of BindSelected
commands, and an EmptyExports command. Also note that the file name identifier is pushed
on top of the scopes stack.

3 Type System

The type judgements are of the form Env ⊢ e : t for expressions and Env ⊢ S : t � Env′ for
statements, imports and exports. Env is a partial function from variables to types. Env has a
special location ϵ where the types of exported variables are stored. t are the types of our type
system, which are defined through the formation rules below.

t := tStm|tExpr

tStm := n (number)
| x (variable)
| tStm + tStm (addition)
| tStm · tStm (multiplication)
| tStm ↑ tStm (maximum)

tExpr := tStm (actual cost)
| tExpr → t (component)
| {idi : tExpri

}i∈1...n (record)

To type an import, one can use the typing rule below. The rule states that an import of a
list of variables from a file can be typed as the addition of the type of the file, plus an amount
n equaling the number of variables imported plus the constant cost of 2. The type environment
now also contains the types of all the variables imported, as well as removing all the types

2

Non-Interference in ReScript Bennetzen, Steinmann, Walsted, Kristensen, Steffensen and Kleist

within the exports location ϵ.

(T-ImportSelected)
[] ⊢ fg(File) : t ▷ Γ′[ϵ → {idi : ti}i∈1...n...m]

Γ ⊢ Import
→n

id F ile : t + n + 2 ▷ Γ[id1 → t1, . . . , idn → tn, ϵ → {}]

Soundness in our type-system states that the type cost is greater than or equal to the cost
of an execution of the program on the abstract machine. The problem here is that there exists
a set of free variables x⃗ in the type t, one variable for each while loop. It must be the case
that ∃σ ∈ x⃗ → N which is an instantiation of the free variables. Finding the function σ is
incalculable in the case of free variables generated by while loops, as the number of iterations
is only known at runtime. For the full Soundness proof of the Type System, we refer to the full
paper [3].

4 Results

With the proof of soundness, we have shown that the type system is sound, meaning that the
cost of all well-typed programs will be over-approximated. Furthermore, if the file does not
include while loops, but only uses for-loops, which has an explicit number of iterations, the cost
estimate will not need to introduce variables, and therefore, we can find an over-approximation
without unknowns. We have also implemented the abstract machine and a constraint-gatherer,
to infer the type of a program which can also be found on GitHub [3].

Since JavaScript XML is primarily used for internet and web-development, use cases for
this type system could be to preemptively infer the cost of executing files, so that you could
begin executing files with a high cost, before they are needed. This could potentially make a
user interface more responsive, as perhaps the change of a button press could already begin to
be calculated, when the user is hovering over the button, but before they press it. Pre-loading
is used in other places, such as browsers loading the web page when the cursor is close to its
hyperlink. It could also be used to find the more costly parts of a program, indicating which
part of a code base that have the most potential to be improved upon. It can also give an
estimate on a complexity of the algorithms in a file, as the type might include variables, that
could indicate what degree of a polynomial the complexity of a file is. The complexity would
not be sound, as we have no way for example to create exponential complexity with our type
system.

5 Future Work

A simple extension of our current abstract machine is to include scopes in loops and conditionals.

Another extension of our work, would be to expand the smaller language, so that it becomes
the full JavaScript XML language. This means that our type system would be able to be
implemented and actually cost-approximate all of a JavaScript XML file.

Another way to extend this work would be to include a file-environment. This is because
some files might already be loaded, and their exported values are already found. This means
that we do not need to execute the imported file, as we already have the result of executing
it. Therefore, a file that imports already loaded files should have its cost set to a much lower
value, when over-approximating the cost of executing a file.

3

Non-Interference in ReScript Bennetzen, Steinmann, Walsted, Kristensen, Steffensen and Kleist

References

[1] Martin Avanzini and Ugo Dal Lago. Automating sized-type inference for complexity analysis. Proc.
ACM Program. Lang., 1(ICFP), aug 2017.

[2] Patrick Baillot and Alexis Ghyselen. Types for parallel complexity in the pi-calculus. CoRR,
abs/1910.02145, 2019.

[3] Benjamin Bennetzen. abstract-machine. https://github.com/BenjaminCB/abstract-machine, may
2024.

[4] Stephan Diehl, Pieter H. Hartel, and Peter Sestoft. Abstract machines for programming language
implementation. Future Gener. Comput. Syst., 16(7):739–751, 2000.

[5] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource bound analysis for
ocaml. CoRR, abs/1611.00692, 2016.

[6] John Hughes and Lars Pareto. Recursion and dynamic data-structures in bounded space: Towards
embedded ml programming. ACM SIGPLAN Notices, 34, 07 1999.

[7] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using
sized types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’96, page 410–423, New York, NY, USA, 1996. Association for
Computing Machinery.

[8] P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964.

[9] Manuel Montenegro, Ricardo Peña-Maŕı, and Clara Segura. A resource-aware semantics and ab-
stract machine for a functional language with explicit deallocation. In Moreno Falaschi, editor,
Proceedings of the 17th International Workshop on Functional and (Constraint) Logic Program-
ming, WFLP 2008, Siena, Italy, July 3-4, 2008, volume 246 of Electronic Notes in Theoretical
Computer Science, pages 167–182. Elsevier, 2008.

4

Simple Worst-Case Optimal Joins

Fritz Henglein∗, Changjun Li, and Mikkel Kragh Mathiesen

DIKU, University of Copenhagen

Abstract

We show that worst-case optimal joins, also for cyclic joins, are easy to program using
basic programming techniques. They only require straightforward dictionaries, iterating
over the smallest set when intersecting multiple sets and nested iteration over the variables
in a join query in any order. We sketch a proof of worst-case optimality by amortization,
where the execution cost is allocated to the generated output, but of padded input. We
point out that modern database systems (still) generate asymptotically inferior code on
cyclic joins.

1 Introduction

Let U be an infinite universe of values.1 A conjunctive query is a first-order logic formula Φ
with free variables x1, . . . , xk for some k ≥ 0 built exclusively from predicate symbols applied
to variables, ∧ (conjunction) and ∃ (first-order quantification). Φ induces a function from finite
models M, interpretations of the predicate symbols by finite relations over U , to the set of
environments ρ that satisfy Φ [2]. More precisely, Φ is semantically interpreted as

E [[Φ]](M) = {(ρ(x1), . . . , ρ(xk)) | M, ρ |= Φ}.

We usually write {(x1, . . . , xk) | Φ} for the output set of the query. Note that the output is a
set of tuples, that is a relation, and indeed a finite relation.

A join query is a conjunctive query without existential quantifiers.

Example 1. A directed graph can be represented by a binary relation R on U . Its paths of
length 3 and triangles are definable as join queries:

P3 = {(x1, x2, x3) | R(x1, x2) ∧R(x2, x3)} (1)

T = {(x1, x2, x3) | R(x1, x2) ∧R(x2, x3) ∧R(x3, x1)} (2)

Acyclic joins constitute a subclass of joins that can be efficiently evaluated, in time that is
(quasi)linear in the sum of the sizes of the input and the output [4, 7, 6, 18, 22] by decomposing
the query into subqueries in a certain way. These techniques yield worst-case optimal execution
plans; in particular, their execution time is linear in the sum of the sizes of the input and the
largest output for any input of that size. The remaining class of joins, cyclic joins, constitute
the hard core of join queries where classical query optimization techniques provably do not yield
worst-case optimal implementations [3, 15, 16], but asymptotically inferior implementations.

Example 2. Given R of size (cardinality) N , paths of a length 3, P3 , is an acyclic join with
maximal output size Θ(N2). They can be computed in time O(N2) by straightforward nested
iteration. This implementation is thus worst-case optimal. The maximal output size of triangles,

∗Corresponding author
1The following can be developed with multiple sorts/types of values. For simplicity we put them all into the

same universe.

Simple Worst-case Optimal Joins

(Extended Abstract) Henglein, Li and Mathiesen

T, is only O(N
3
2), however, which follows from its fractional edge covering bound [3, 9]. It

is usually implemented in database query engines by first computing P3 and then filtering all
triples (x1, x2, x3) away where (x3, x1) ̸∈ R. This takes O(N2) time, but since the maximal

output of the query is asymptotically smaller, only O(N
3
2), this is not a worst-case optimal join

algorithm for computing triangles.

Intuitively, the hard part of cyclic joins is not generating intermediate results that will
eventually be filtered away.

Two distinct general worst-case optimal join algorithms were independently discovered only
about a dozen years ago. One algorithm performs careful counting of sizes of intermediate
tables, emulating the Grohe-Marx fractional edge covering bounds [17, 1]. These must be
computed before-hand for each query, a nontrivial task in itself. Another approach introduces
leap-frog tries and a non-constructive proof of worst-case optimality [21, 8], which seems to be
practically superior. Both methods are rather involved, however; they are not implemented in
mainstream databases.

2 Simple worst-case optimal joins

We show that, surprisingly, worst-case optimal joins are stunningly easy to implement. They
require only three standard ingredients:

• dictionaries with constant-time size (length), lookup and domain iteration;

• iterating over the smallest set when intersecting multiple sets; and

• straightforward nested iteration over the join variables in any order.

Our join algorithm works, informally, as follows.2

1. Put the join query into the form

{(x1, . . . , xk) | C1(x1, . . .) ∧ . . . ∧ Ck(x1, . . .) ∧Dk+1(. . .) ∧ . . . ∧Dn(. . .)}

where the Ci are the predicate symbols in the query with one occurrence of some freely
chosen designated variable x1 and the Dj are the remaining ones, without an occurrence
of x1.

3 The ellipses . . . stand for any sequence of variables not containing x1.

2. Build dictionaries C̄ such that C̄(x1) = {(x2, . . . , xl) | C(x1, x2, . . . , xl)}.

3. For each x1 ∈ dom(C̄i0), where C̄i0 is a C̄i with the smallest domain, do

(a) compute D1 = C̄1(x1), . . . , Dk = C̄k(xk);

(b) compute the join {(. . .) | D1(. . .) ∧ . . . ∧Dk(. . .) ∧Dk+1(. . .) ∧ . . . ∧Dn(. . .)} in the
same fashion;

(c) return (x1, . . .) for each such result.

This unrolls into a nested loop over all the variables occurring in the query, which is straight-
forwardly expressed using comprehension notation as in SETL [19], Haskell [14] or Python
[20].

2We use xi both as metavariables for variables in formulae and for values in the models. Likewise we use C
both as predicate symbol and for the relation that interprets it in a model.

3The case of multiple occurrences of x1 is left out; it is straightforward to handle.

2

Simple Worst-case Optimal Joins

(Extended Abstract) Henglein, Li and Mathiesen

triangles rel = [(x1, x2, x3) |

let s = dict rel, -- maps x to {y | (x,y) in rel}

let sTransp = -- maps y to {x | (x,y) in rel}

dict [(y, x) | (x, y) <- rel]

x1 <- minDom s sTransp, -- iterates over dictionary with smallest domain

let t1 = apply s x1, -- {y | (x1,y) in rel}

let t3 = apply sTransp x1, -- {z | (z, x1) in rel}

x2 <- minDom t1 s, -- iterates over t1 or s, whichever is smallest

contains t1 x2, -- checks whether x2 is in t1

let u2 = apply s x2, -- {y’ | (x2,y) in rel}

x3 <- minDom u2 t3, -- iterates over set u2 or t3, whichever is smallest

contains u2 x3, -- checks whether x3 is in u2

contains t3 x3 -- checks whether x3 is in t3

] -- adds (x1, x2, x3) to the solution

Figure 1: Worst-case optimal triangles, in Haskell

Example 3. Triangles can be computed monadically in Haskell using list comprehension nota-
tion. See Figure 1.

Theorem 1. Our join algorithm is worst-case optimal.

Proof. (Sketch) We require dictionaries with constant-time lookup. A dictionary for a relation
given as a list of pairs can be constructed in linear time.4 It is important that the length
of a dictionary be memoized to have constant-time complexity. This facilitates finding the
dictionary with the smallest domain in constant time5. Then each constant-time step in the
algorithm can be allocated to an output tuple that is eventually produced if a fixed fraction
of the elements of the smallest domain C̄i0 chosen to iterate over are also contained in the
other domains. That is accomplished by padding the input relations to the query with shadow
elements. This only doubles the input size, but ensures that each step in the algorithm is
amortized over the output produced, which eventually yields that the algorithm is worst-case
optimal. See [12] for a generalized application of this argument.

It can be shown that choosing any static strategy for fixing the C̄i to iterate over rather than
choosing dynamically the C̄i0 with smallest domain leads to asymptotically inferior performance.

Example 4. The datasets Rn = {(1, i) | 0 < i ≤ n}∪ {(i, 1) | 0 < i ≤ n} have 3n− 2 triangles.
Our join algorithm in Example 3 executes in O(n) time whereas all variations that statically fix
the dictionary to iterate over execute in Θ(n2) time. See Table 2.

Similarly, MySQL, SQLite and Postgres evaluate triangles on the Rn datasets in Θ(n2) time
and have execution times comparable to rows 2-5 in Figure 2.

Note that our algorithm beats the fractional covering bound of O(n
3
2) in this case; this is

because the dataset is already padded and thus executes in time linear in the size of the output.

4Hashing-based dictionaries are standard; trie-based implementations tend to be better; comparison-based
dictionaries/search trees worse.

5That is, dependent on the number of clauses in the query, but independent of the number of inputs in the
relations

3

Simple Worst-case Optimal Joins

(Extended Abstract) Henglein, Li and Mathiesen

Iteration domain/Rn 1000 2000 4000 8000 16000 32000 . . . 16384000
Smallest domain 0.015 0.031 0.050 0.081 0.125 0.203 . . . 90.204
First/first domain 0.254 0.944 3.695 15.097 58.755 238.082 (≈ 2 yrs)
First/second domain 0.520 2.044 8.057 29.878 115.906 454.015
Second/first domain 0.231 0.908 3.606 13.560 51.538 203.103
Second/second domain 0.487 1.930 7.662 28.598 109.035 450.836

Table 1: Examples of triangle computation times in seconds on Rn = {(1, i) | 0 < i ≤ n} ∪
{(i, 1) | 0 < i ≤ n} using ghci, Version 9.4.7, on MacBook Air M1 (2020). The top row is for
the code in Figure 1; the remaining four lines are for fixed choices of choosing x2 and x3.

3 Discussion and future work

This is preliminary work. Next steps consist of systematic empirical evaluations with random
and synthesized data sets as well as more comparisons with commercial and research database
systems. Given the simplicity of implementing worst-case optimal joins demonstrated in this
paper, a puzzling question is why almost all relational database systems, including all commonly
used ones, to this day do not implement this. Since dictionaries are commonly used as index
data structures in database systems, we conjecture that this is because they may have forgotten
to employ the standard trick to always choose the smallest set to iterate over when intersecting
sets. They likely use a statically fixed argument to iterate over, say the first argument, which
demonstrably yields asymptotically suboptimal performance; see rows 2-5 in Table 2. Another
reason could be the use of sort-merge join rather than hash table or radix-tree based joins.
Sort-merge join correspond to traversing all the elements in the two input sets when computing
their intersection rather than just the smallest and are thus asymptotically inferior on cyclic
queries.

As it turns out, worst-case optimality can be extended to algebraic joins [12], which oper-
ate on potentially infinite relations and algebraic generalizations of relations.6 The algebraic
generalizations open avenues to expressive semantic frameworks for analytic queries, machine
learning [5], reversible logic programming [10], and even quantum computing. Additionally,
they provide a promising toolbox for efficient data structure and algorithm design, including
parallel execution [11, 13].

References

[1] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions asked frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS ’16, pages 13–28, New York, NY, USA, 2016. Association for Computing Machin-
ery.

[2] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalences among relational expressions.
SIAM Journal on Computing, 8(2):218–246, 1979.

[3] Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for relational joins.
SIAM Journal on Computing, 42:739 – 748, 11 2008.

[4] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM (JACM), 30(3):479–513, 1983.

6Indeed, the present work has arisen by removing the generalization and specializing the proof of optimality
to classical relational joins.

4

Simple Worst-case Optimal Joins

(Extended Abstract) Henglein, Li and Mathiesen

[5] Martin Elsman, Fritz Henglein, Robin Kaarsgaard, Mikkel Kragh Mathiesen, and Robert Schenck.
Combinatory adjoints and differentiation. In Jeremy Gibbons and Max New, editors, Proc. 9th
Workshop on Mathematically Structured Functional Programming (MSFP), Electronic Proceedings
in Theoretical Computer Science, 2022.

[6] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J. ACM,
49(6):716–752, November 2002.

[7] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunctive
queries. J. ACM, 48(3):431–498, 2001.

[8] Todd J. Green. LogiQL: A declarative language for enterprise applications. In Proceedings of the
34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’15,
pages 59–64, New York, NY, USA, 2015. ACM.

[9] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transactions
on Algorithms (TALG), 11(1):1–20, 2014.

[10] Fritz Henglein, Robin Kaarsgaard, and Mikkel Kragh Mathiesen. Algeo: An algebraic approach
to reversibility. In International Conference on Reversible Computation, pages 128–145. Springer,
2022.

[11] Fritz Henglein, Robin Kaarsgaard, and Mikkel Kragh Mathiesen. The programming of algebra.
In Proc. 9th Workshop on Mathematically Structured Functional Programming (MSFP), Munich,
Germany, April 2022. Electronic Proceedings in Theoretical Computer Science (EPTCS).

[12] Fritz Henglein and Mikkel Kragh Mathiesen. Worst-case optimal algebraic joins. Unpublished
manuscript, December 2020.

[13] Fritz Henglein and Mikkel Kragh Mathiesen. Synthetic algebraic programming. In Annie Liu,
editor, Proc. Logic and Practice of Programming (LPOP), December 2022.

[14] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel,
Maŕıa M Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, et al. Report on the
programming language Haskell: a non-strict, purely functional language (version 1.2). ACM
SigPlan notices, 27(5):1–164, 1992.

[15] H.Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. In Proceedings of
the 31st Symposium on Principles of Database Systems, pages 37–48. ACM, 2012.

[16] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM (JACM), 65(3):1–40, 2018.

[17] Hung Q Ngo, Christopher Re, and Atri Rudra. Skew strikes back: New developments in the theory
of join algorithms. arXiv preprint arXiv:1310.3314, 2013.

[18] Anna Pagh and Rasmus Pagh. Scalable computation of acyclic joins. Journal of the ACM, 2006.

[19] J. T. Schwartz, R. B. K. Dewar, E. Schonberg, and E. Dubinsky. Programming with Sets: An
Introduction to SETL. Monographs in Computer Science. Springer New York, NY, 1986.

[20] Guido Van Rossum, Fred L Drake, et al. Python reference manual, volume 111. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[21] Todd L. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm. CoRR, abs/1210.0481,
2012.

[22] Dan E. Willard. An algorithm for handling many relational calculus queries efficiently. Journal of
Computer and System Sciences, 65(2):295 – 331, 2002.

5

UI Test Automation Framework for Energy Analysis:

Exploring Energy Compositionality of Actions∗

Timmie M. R. Lagermann1, Kristina Sophia Carter1,
Su Mei Gwen Ho1, Maja H. Kirkeby1

Roskilde University
timmiel,kcarter,smgho,majaht@ruc.dk

Abstract

UI Testing Frameworks have been suggested for evaluating the energy consumption
of software. Previous research has studied how automation frameworks can increase the
energy consumption from the individual actions, compared to a human produced baseline.
In this study, we present the first explorations on the dependence between the individual
actions. We explore the Selenium Test Framework’s actions Input, i.e., inputting text into
a text field, and Click, i.e., the action of clicking a button. These initial results show that
the energy consumed by the individual Framework actions are dependent, and they are
order-independent.

1 Introduction

UI Testing frameworks such as Selenium, Cypress, Nightwatch, Puppeteer, or Playwright, has
been proposed for energy analysis of user tasks (user flows that solve a task) in software [1].
When measuring the energy consumption of a system, everything running on the system is
included in the measurement. This presents an issue, as the energy overhead of the chosen
UI testing framework is included in the energy measurement of a user task, making it difficult
to isolate the energy consumption of the user flows themselves. Therefore, it is important to
determine the overhead introduced by the framework. This has been studied for individual
actions, such as ”Click,” ”Input,” ”Double Click,” and ”Drag-and-Drop” on mobile phones [1].
However, it has not yet been studied how the energy overhead behaves in the case of action
sequences, which is necessary for analyzing the energy consumption of user tasks. In this pre-
study, we have chosen one UI testing framework, namely Selenium, to study the composition
of actions of two selected actions: Click and Input (for inputting text into a text field) and
their combinations. We will examine whether the energy consumption of the Selenium test
framework’s actions, Type Text and Click Button, is independent of each other and whether
they are order-independent.

2 Methodology

Our aim is to explore the dependency between actions’ overhead in energy consumption. The
measurement setup is illustrated in Figure 1 and further specified in Table 1. It consists of five
parts:

• Computer for Data collection: A laptop with TestController, to initiate the scripts and
to collect and monitor the data of the experiment.

∗This research was supported by the Independent Research Fund Denmark Project no. 2102-00281B

Energy Compositionality of Actions Lagermann, Carter, Ho, and Kirkeby

Figure 1: The Measurement setup.

• Switch: A network switch connects the components in a local network, via ethernet cables.

• Power supply: A Siglent (model SPD3303X-E) provides power to the Client and collects
the energy data.

• Client: A Raspberry Pi with an installation of Selenium and where the scripts 4 reside
namely: Click, Input, Click+input and Input+Click.

• Server: A Raspberry Pi to host the website. The web browser in use is Chromium, which
is a bare bone version of Google Chrome.

The experiment and the measurements are started and monitored from the laptop running
TestController1. The laptop initiates the Selenium scripts through SSH on the client, which
runs the scripts headless on the server hosting a local website. The power supply provides a
constant voltage with varying current and power, depending on the task of the client. These
voltage, current and power are monitored and collected via the laptop.

In order to strengthen the reliability of our data, we conducted each experiment 35 times,
while making sure that the setup each time were identical and independent. This also makes
the energy measurement less prone to random fluctuations from various sources such as the
underlying operation system and the measurement equipment [1, 2].

We execute our experiment in a controlled environment, to minimize potential side effects
from user interaction with the UI [1]. To further control the underlying processes we disable
some of the services with the following commands: ”sudo apt remove unattended-upgrades” and
”sudo rfkill block 0 1”. We will not need to consider whether to include the idle energy usage,
since this preliminary study is on the dependency between the actions’ energy consumption.

Platform Raspberry Pi 4 Model B Rev 1.5
Operation System Linux version 6.1.21-v8+ Debian 11, Bullseye

Node Specifications Node: v20.17.0, nvm: 0.40.0, npm: 10.08.02
Automation Framework selenium-webdriver@4.24.1

Script repetitions (approx 20 sec) Click: 120, Click;Input: 50, Input;Click: 50, Input: 70

Table 1: Platform specifications and script repetitions.

3 Results

Figure 2 shows the histogram and probability density function (left) and box plots of the 4 tests
(right). A Shapiro-Wilk test indicated that the cleaned energy consumption data for ’Click’

1https://lygte-info.dk/project/TestControllerIntro%20UK.html

2

Energy Compositionality of Actions Lagermann, Carter, Ho, and Kirkeby

Figure 2: The Energy Consumption of actions and sequences.

(W = 0.977, p = 0.662) approximated normality, while the ’Input’ data approached normality
but remained borderline (W = 0.941, p = 0.062). However, the energy consumption of the two
sequences are both bimodal. The distributions of Click and Input are significantly different,
and each of them are significantly different from the compositions, i.e., the Mann-Whitney U
Statistic: 35.0 with P-value: 1.22 ∗ 10−11 below 0.05. In addition, the Spearman Correlation is
0.050 with P-value: 0.774 demonstrating that there is no significant relationship between them.

The individual actions are both consuming less energy than their sequences, which is fol-
lowing the expectation, that the combined test of both Click and Input should consume more
than the individual actions. Indeed, summing the medians of the individual actions (Click:
0.1268, Input: 0.2376) to 0.3644 is close to the median of both the sequences (Click;Input:
0.3645, and Input;Click: 0.3644). The distributions of the sequences are bimodal and thus not
normal distributed indicating that Click and Input are not independent in sequences [3]. While
independence would have simplified the analysis, it is not strictly required for composition.

A visual inspection indicates that the two sequence distributions have similar tendencies,
which suggests that the order of the actions are irrelevant. In addition, there is not enough
evidence to reject that they come from the same distribution using Mann-Whitney U(Statistic:
646.0, P-value: 0.698). The P-value is above 0.05 and there is no significant difference between
the two sequences. Thus, the evidence indicates that the order does not matter.

4 Conclusion

In this prestudy we have provided a setup to measure the energy consumption of the actions,
Click and Input, for the automation Test Framework of Seleniums and the compositions of the
actions. Our results show that the energy consumption of the actions consumes almost the same
regardless of the ordering of the actions. This suggest that the order of the actions of Click
and Input are independent. However, the results also indicate that the actions are dependent
on each other when in sequence.

References

[1] Lúıs Cruz and Rui Abreu. On the energy footprint of mobile testing frameworks. IEEE Transactions
on Software Engineering, 47(10):2260–2271, 2021.

[2] Alla G. Kravets and Vitaly Egunov. The software cache optimization-based method for decreasing
energy consumption of computational clusters. Energies, 15, 10 2022.

[3] Eric W. Weisstein. Normal sum distribution, 2024. From MathWorld–A Wolfram Web Resource.

3

Bayesian Energy Profiler for Java (Extended Abstract)∗

Joel Nyholm1, Wojciech Mostowski1, and Christoph Reichenbach2

1 Halmstad University, Halmstad, Sweden
joel.nyholm@hh.se, wojciech.mostowski@hh.se

2 Lund University, Lund, Sweden
christoph.reichenbach@cs.lth.se

1 Introduction & Motivation

Energy efficiency is a key concern in the design of mobile software, but no less significant for
understanding the environmental impact of backend software in data centers. However, under-
standing and improving the energy usage of even simple software systems can be challenging,
and modern language run-time systems with complex, dynamic optimizations exacerbate this
challenge. Consider Java: Java stores executable code in a platform-independent intermedi-
ate representation, Java bytecode, that is executed on platform-specific Java Virtual Machines
(JVMs). Energy consumption of Java code thus depends not only on the dynamic behavior of
the just-in-time compiler and garbage collector, but also on peculiarities of the target hardware,
operating system, and JVM implementation. To understand the energy impact of some soft-
ware design decision, a software engineer today would need detailed knowledge that penetrates
all these abstraction layers and accounts for the peculiarities of all intended target platforms.

To aid developers, we propose to offer tools that support the Static Analysis of Energy
Usage in Software1, that can both infer energy usage properties through scalable and explain-
able analysis techniques [2, 13], and verify explicit developer claims via theorem-proving based
verification, extending prior work on energy usage modeling [6] to the KeY system [1].

We split the challenge of building such tools into modeling (1) the mapping from static pro-
gram structure to dynamic traces, and (2) the energy consumption of dynamic traces. We here
report on our initial exploration of this second aspect: building a statistical energy consumption
model for Java bytecode in a controlled setting, on the Raspberry Pi 5 platform.

2 Statistical Energy Profiler for Java

Our energy profiler uses a Java bytecode pattern as its input and outputs a probability dis-
tribution of its corresponding energy cost, and examine the bytecode patterns emitted by the
OpenJDK javac compiler (Figure 1).

iconst 1
istore 1

int y = 1;

iload 1
bipush 10
iadd
istore 2

int x = y + 10;

Figure 1: Bytecode patterns for two variable declarations and one addition

∗This work is supported by ELLIIT funding for project D12.
1https://elliit.se/project/static-analysis-of-energy-usage-in-software/

Causal Energy Profiler for Java Nyholm et al.

Our energy model consists of two components: the measurement and the modeling com-
ponent. The measurement component measures the energy of bytecode patterns through a
current sensor connected to the execution platform and a power supply. The Voltage V from
the power supply is constant, the current sensor measures the Amperage I, and the application
measures the execution time t of the bytecode patterns. Thus, we can calculate the energy cost
E = V × I× t. To account for statistical variation, we collect ntotal samples for each pattern on
our execution platform (Section 3). We divide these ntotal samples across ndiv subsets, which
execute in stochastic order, shuffling the subsets of patterns. We currently draw the patterns
from five categories: assignments, arithmetic, logic, conversion, and jumps, all of which we
parameterize by any types and input sizes that appear in the patterns. We consider primitive
types and one- and two-dimensional arrays, measuring all permutations.

The modeling component, implemented in R [14], models the energy usage for each bytecode
pattern into probability distributions. We use Bayesian statistics, meaning initializing our
models with explicit prior distributions that repeatedly update with the observed data. We use
the following priors, based on what we have observed as typical current (I), voltage (V), and
execution time (t) measurements, with a particularly wide standard deviation for t:

E ∼ N (V × I × t, σ)

t ∼ N (5e−4, 1.5e−4)

V ∼ N (5, 0.05)

I ∼ N (0.6, 0.1)

σ ∼ N (1e−5, 1e−6)

Since the statistical model creates a Gaussian probability distribution for the energy cost of
each bytecode pattern, we can utilize convolution to create a probability distribution consisting
of several bytecode pattern’s energy distributions. Hence, we can statically estimate the energy
cost of a Java program considered as a bytecode collection matching our measured patterns.

3 Experimental Setup

Since time and energy consumption can be affected by a large number of parameters, we fix
several parameters that we can control directly and account for variation in others. As our
execution platform, we use the Raspberry Pi 5 with its CPU frequency fixed to 1.5 GHz, on
Raspberry Pi OS Lite 64-bit 6.6.20 and OpenJDK 17.0.10, with garbage collection and JIT
disabled. Since energy consumption can vary between different instances of the same hardware
platform, due to variations in its electrical components, such as resistors [12] and PCBs [3], we
measure on two (functionally identical) instances of the execution platform.

4 Related Work

Perhaps the closest work to ours is Hao et al.’s eLens system [4], which statically and statistically
predicts energy usage of Android applications. Other work for Android has examined the
connection between API usage and energy consumption [9] and strategies for associating energy
usage and source code [8]. Prior work on Java has explored a number of other dimensions,
including the role of the JVM on energy consumption [11].

The accuracy of these approaches hinges on the accuracy of their approach to energy pro-
filing. Approaches with hardware-based sampling often attach an external power meter [9, 11]

2

Causal Energy Profiler for Java Nyholm et al.

or similar hardware device, while others, such as GreenMiner [5], use a custom measurement
platform. Software-based sampling avoids the need for specialized hardware and instead uti-
lizes monitors internal to the execution platform, e.g. via performance counters [7], though it
is unclear how accurately these software metrics reflect actual power consumption [10].

5 Conclusions and Future Work

We have briefly presented our in-progress work on constructing Bayesian energy consumption
models for Java. Our approach aims at obtaining large numbers of high-frequency samples to
allow us to build precise statistical samples. Since the quality of our initial results has been
hampered by limitations of our hardware power-usage monitors, we are currently evaluating
alternative options for cost-effective power sensors.

References

[1] D. Bruns, W. Mostowski, and M. Ulbrich. Implementation-level Verification of Algorithms with
KeY. International Journal on Software Tools for Technology Transfer, 17:729–744, Nov. 2015.

[2] A. Dura, C. Reichenbach, and E. Söderberg. JavaDL: Automatically Incrementalizing Java Bug
Pattern Detection. In Proceedings of the ACM on Programming Languages. ACM, Sept. 2021.

[3] S. Ghosh and K. Roy. Parameter Variation Tolerance and Error Resiliency: New Design Paradigm
for the Nanoscale Era. Proceedings of the IEEE, 98(10):1718–1751, 2010.

[4] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile application energy con-
sumption using program analysis. In ICSE 2013, pages 92–101, 2013.

[5] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Romansky. Greenminer:
a hardware based mining software repositories software energy consumption framework. MSR 2014,
page 12–21, New York, NY, USA, 2014. Association for Computing Machinery.

[6] R. Kersten, P. P. Toldin, B. van Gastel, and M. van Eekelen. A Hoare Logic for energy consumption
analysis. In Foundational and Practical Aspects of Resource Analysis, LNPSE 8552. Springer, 2014.

[7] M. Kumar and W. Shi. Energy consumption analysis of java command-line options. In 2019 Tenth
International Green and Sustainable Computing Conference (IGSC), pages 1–8, 2019.

[8] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source line level energy information
for android applications. ISSTA 2013, page 78–89, 2013.

[9] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and D. Poshyvanyk.
Mining energy-greedy API usage patterns in Android apps: an empirical study. MSR 2014, page
2–11, New York, NY, USA, 2014. Association for Computing Machinery.

[10] J. Mair, D. Eyers, Z. Huang, and H. Zhang. Myths in power estimation with performance moni-
toring counters. Sustainable Computing: Informatics and Systems, 4(2):83–93, 2014. Special Issue
on Selected papers from EE-LSDS2013 Conference.

[11] H. Oi. Power-performance analysis of JVM implementations. In ICIMU 2011 : Proceedings of the
5th international Conference on Information Technology & Multimedia, pages 1–7, 2011.

[12] V. K. Pandey and C. M. Tan. Effect of resistor tolerance on the performance of resistor net-
work—An application of the statistical design of experiment. International Journal of Circuit
Theory and Applications, 50(1):175–182, 2022.

[13] I. Riouak, C. Reichenbach, G. Hedin, and N. Fors. A precise framework for source-level control-flow
analysis. In SCAM 2021. IEEE Computer Society, Sept. 2021.

[14] The R Foundation. The R Project for Statistical Computing. https://www.r-project.org/.
Online; accessed 2024-09-20.

3

Input Reduction Revisited

Christian Gram Kalhauge

DTU Compute, Kgs. Lyngby, Denmark
chrg@dtu.dk

Abstract

Given an input that crashes your program, finding a minimal working example is crucial
to enable easy debugging. We refer to this as the input reduction problem. Current state
of the art techniques are either syntax oriented, which means they cannot do interesting
transformations, or they are very painstakingly written to fit a specific input type. In this
series of work we present a novel technique, we call Reduction Trees. It is a technique
that allows the user to map out all possible sub-inputs of an input in an ordered binary
tree. Theoretically, this technique allows for fast solutions to the input reduction problem,
while being flexible enough to enable transformations. However, it has one big flaw: the
trees had to be specified lazily because otherwise they were too big to fit in memory.
This made them hard to encode in non-lazy languages. During last years talk on Input
Reduction, many great questions were asked. The best, by far, was “Is it possible to write
your reductions in a language like Python?” The answer turns out to be yes! and to great
effect. Given a relatively modest implementation effort we are able to produce reduction
results equivalent to the state of the art in a fraction of the time.

1 Input Reduction and Reduction Trees

Imagine you are writing a compiler for a programming language, and some user of that language
has the audacity to run the compiler with an input that crashes the compiler. The first thing
you will ask the user to do, is to provide an MWE – a minimal working example. And, when the
user eventually fails at this, you manually and laboriously have to do this reduction yourself.
This is the Input Reduction Problem [3, 8, 1, 2, 7].

Defintion 1 (The Input Reduction Problem). Given (I,⪯I , P, i), where i is an input from a
partially ordered set (poset) of inputs (I,⪯I), and a polynomial-time predicate P where P (i),
find j ∈ I st. j ⪯I i st. it is a local minimum: ∀k ∈ I. k ≺I j =⇒ ¬P (k).

Here the poset is the ordered set of all possible sub inputs of the original failing input, and
the predicate P is running the compiler on the input to see if it fails. The local minimum is
desirable, because then we know that every part of this input is important to recreate the bug.

Reduction Trees Since it is unrealistic to store the reduction poset of even medium sized
inputs in memory, we use a novel technique called reduction trees. Reduction trees both encode
the poset which we want to do reduction over, as well as how to do the reduction.

Defintion 2 (Reduction Tree). A labeled reduction tree r ∈ RTree(I,⪯I) from the poset (I,⪯I)
is a binary tree, with leafs from the poset i ∈ I, and with labeled nodes r1�l r2. We say i ∈ r, if
r = i or r = r1�l r2 and i ∈ r1∨ i ∈ r2. We also refer to the rightmost element as the extracted
element ⌈r⌉: ⌈r⌉ = i if r = i and ⌈r⌉ = ⌈r2⌉ if r = r1 �l r2. Finally each node r1 �l r2 must be
consistent with the poset:

r1, r2 ∈ RTree(I,⪯I) ∧ ⌈r1⌉ ⪯I ⌈r2⌉ ∧ ∀j ∈ r. j ⪯I ⌈r1⌉ =⇒ j ∈ r1.

Input Reduction Revisited Kalhauge

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

(a) The Hesse diagram.

�a

�b

�c

{} {c}

�c

{b} {b, c}

�b

�c

{a} {a, c}

�c

{a, b} {a, b, c}

(b) A reduction tree

1 def reduce_abc(check) -> list:

2 result = []

3 for x in [’a’, ’b’, ’c’]:

4 if not check(f"remove {x}?"):

5 result.append(x)

6 return result

(c) The reduction tree as a Python program.

1 >>> p = lambda i: ’a’ in i

2 >>> reduce(p, reduce_abc)

3 remove a? .. test [’b’, ’c’] .. False

4 remove b? .. test [’a’, ’c’] .. True

5 remove c? .. test [’a’] .. True

6 {’a’}

(d) Reduction given the predicate P (i) ≡ a ∈ i.

Figure 1: Reduction of (2{a,b,c},⊆) using reduction trees encoded as Python program.

The intuition behind the tree is best captured by an example (see Figure 1). It depicts the
Hesse diagram (fig. 1a) for the poset (2{a,b,c},⊆) and a corresponding reduction tree (fig. 1b).
The largest element of the tree is the extracted element ⌈r⌉ = {a, b, c}. The four interesting
properties that the tree must have is that: 1) every leaf has to be in the poset; 2) every branch
of a node has to be a reduction tree from the same poset, e.g., {}�c {c} ∈ RTree(2{a,b,c},⊆); 3)
the extracted element of a left branch has to be smaller that the right branch, e.g., {} ⊆ {c} ⊆
{b, c} ⊆ {a, b, c}; and 4) if an element in the tree is smaller than the extracted element of the
left branch, it has to (also) be in the right branch, e.g., ({} � {c}) � ({} � {a, c}) is a valid
reduction tree, even though {} ⊆ {c} because it is also on the left side.

Solving the Input Reduction Problem Assuming that the extracted element of the re-
duction tree satisfies the predicate P (⌈r⌉), a reasonable assumption given that we start with
an input that crashes the compiler, and it is of finite depth, we can easily find a smaller input
that also satisfy the predicate:

⌊i⌋P = i ⌊r1 �l r2⌋P = if P (⌈r1⌉) then ⌊r1⌋P else ⌊r2⌋P .

Let us illustrate the algorithm on the example (in Figure 1) with the predicate P (i) ≡ a ∈ i.
The algorithm would first check the extracted element of the left branch of the top node P ({b, c})
(labeled a). This would fail, so we continue our reduction on the right branch (labeled b). Here
we check P ({a, c}). It is true, which means we reduce to the left branch (labeled c). Finally,
P ({a}) is true which means we reduce to the left branch. It is a leaf {a} which we return.

If the reduction tree is of polynomial depth and if P is monotone over the poset ⪯I , then
this algorithm is a polynomial-time solution to the Input Reduction Problem.

2 Reduction Trees as Python Programs

The big limitation of the approach above is that it require us to specify a very big tree of
inputs in some way. Previously, we used the lazyness of Haskell to encode the trees, but in

2

Input Reduction Revisited Kalhauge

Listing 1: The reduction algorithm in Python.

1 def reduce(predicate , rtree):

2 path: list[bool] = []

3 labels: list[str] = []

4 def check(label):

5 labels.append(label)

6 return path[len(labels) - 1] if len(path) >= len(labels) else False

7 i = rtree(check)

8 while len(path) < len(labels):

9 path.append(True); labels.clear ()

10 if t := predicate(j := rtree(check)): i = j

11 else: path[-1] = False

12 print(f"{labels[len(path) - 1]} .. test {j!r:<10} .. {t}")

13 return i

this section, we will address this by encoding them as Python programs. The idea is simple:
we can encode the tree as the paths of a Python program that given a source of external
branching – a subprocedure that given a label can produce a boolean (L ⇝ B) – produce
inputs: (L⇝ B)⇝ I ⊇ RTree(I,⪯I). We call the source of external branches check, as it reads
as checking if the label is true or false. In Figure 1c, we have encoded the reduction tree as
a Python program. The program reads quite naturally, for every element in the set {a, b, c},
check if we should remove it, if not then add it to the results.

Underneath the covers (see Listing 1), reduction implemented as maintaining two lists, a
path through the tree and a list of labels. check adds the label to a list while it direct the
program down the correct path given the number of checks done so far (length of labels). If
we are out of decisions in the path, we simply extract the right most element by returning false
from then on. Reduction is now trivial, first extract the right most element of the tree, then
until we have given every path a value (e.i., reached a leaf), we try to go down the true branch,
essentially test P (r1), if that succeeds update i and continue down that branch, otherwise revert
that choice to false, and go down the right branch. When we reach a leaf, return the input.

In Figure 1d, we use the algorithm in Listing 1 to reduce the tree.

3 Preliminary Results

The outstanding problems is now to do the encoding. Building reduction trees of poset that
make real predicates relatively monotone is challenging, but not impossible. We have build
encodings in three different languages, Haskell, Python, and LEAN. Each requires different
extensions of the core idea presented here We are currently in the process of evaluating them.

We have built a reducer of C programs that competes with two state of the art reducers,
C-Reduce [4] and Perses [5]. On a limited set of benchmarks we can do 99.8% and 99.97% of
the reduction of C-Reduce and Perses in 10% and 26% of the single-threaded time. We can
achieve this speedup because our reduction technique allows for precise reduction definitions
and make the predicate relatively monotone.

We are also in the process of building a reducer for LEAN4, a theorem prover with extendable
syntax. LEAN4 is a compiler in fast development and use. It happens that a change in the
compiler produce a regression in the very big library mathlib4. This case study poses an
interesting problem, because current syntax based approaches [3, 5, 6, 9] would not work as the
syntax of a Lean program is first known at runtime.

3

Input Reduction Revisited Kalhauge

References

[1] C. G. Kalhauge and J. Palsberg. Binary reduction of dependency graphs. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 556–566, 2019.

[2] C. G. Kalhauge and J. Palsberg. Logical bytecode reduction. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation, pages 1003–1016, 2021.

[3] G. Misherghi and Z. Su. Hdd: hierarchical delta debugging. In Proceedings of the 28th
international conference on Software engineering, pages 142–151, 2006.

[4] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case reduction for
c compiler bugs. In Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 335–346, 2012.

[5] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su. Perses: Syntax-guided program reduction. In
Proceedings of the 40th International Conference on Software Engineering, pages 361–371,
2018.

[6] Z. Xu, Y. Tian, M. Zhang, G. Zhao, Y. Jiang, and C. Sun. Pushing the limit of 1-minimality
of language-agnostic program reduction. Proceedings of the ACM on Programming Lan-
guages, 7(OOPSLA1):636–664, 2023.

[7] A. Zeller. Yesterday, my program worked. today, it does not. why? ACM SIGSOFT Software
engineering notes, 24(6):253–267, 1999.

[8] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Trans-
actions on Software Engineering, 28(2):183–200, 2002.

[9] M. Zhang, Z. Xu, Y. Tian, Y. Jiang, and C. Sun. Ppr: Pairwise program reduction. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 338–349, 2023.

4

A Simple Method for Inverting Tail-Recursive Functions

Torben Ægidius Mogensen

DIKU, University of Copenhagen
torbenm@di.ku.dk

Abstract

Program inversion has long been studied. For functional programming languages, tail-
recursive functions are an issue, as they are most often not reversible on their own, but
only in specific calling contexts. We present a simple method for inverting functions in a
subset of Haskell, and show that this can not handle tail recursion. We then propose a
solution to this that involves a temporary rewrite of calls to tail-recursive functions to a
functional iterative form, inverting this, and then rewrite back into a tail-recursive form.

1 Introduction

Inverting programs to compute the (possibly partial) inverse function of the original program
has long been studied [1–6,8, 10,11].

The equivalent of loops in functional languages are tail-recursive functions, as these can be
implemented without an unbounded stack. However, tail-recursive functions are most often
not reversible on their own, but only in specific calling contexts. A paper on semi-inversion of
first-order functional programs [9] proposed a simple solution to (fully) inverting tail-recursive
functions. The main limitation of this method is that it does not handle tail-recursive functions
with multiple non-recursive base cases, as it uses the single base case for initialising the inverse
function. A recent paper [7] presents a more general inversion transformation that can handle
multiple base cases in tail-recursive function definitions. It is, however, fairly complex and
increases the size and computation time of the inverted program, as it introduces a reified con-
tinuation datatype that separates input, step, and output. We will extend the simple approach,
but borrow the idea of separating the input, step, and output parts of tail-recursive functions
and their calling context.

2 Program Inversion for a Subset of Haskell

We consider a small subset of Haskell extended with an iteration construct. The choice of
language is not important, we would have used ML instead. In this subset, we can easily invert
a single function rule. Fig. 1 shows both the syntax and the inversion rules. The inversion rules
are unchanged from previous work [9], but the translation of calls to tail-recursive functions
below is extended by having separate in, out, and step functions, where the original only had
a step function.

Given a calling context of the form let 𝑝0 = 𝑓 𝑝1 in 𝑒0, where 𝑓 is a tail-recursive function,
we transform this into

let 𝑥 = 𝑓𝑖𝑛 𝑝′1 in let 𝑦 = iter 𝑓𝑠𝑡𝑒𝑝 𝑥 in let 𝑝0 = 𝑓𝑜𝑢𝑡 𝑦 in 𝑒0

where 𝑥 and 𝑦 are new variables and 𝑝′1 is a pattern that just contains the free variables of 𝑝1
(in a tuple if more than one). We, additionally, add a definition 𝑓𝑖𝑛 𝑝′1 = 𝑝1, rename the non-
recursive (base-case) rules for 𝑓 to 𝑓𝑜𝑢𝑡, rename the tail-recursive rules to 𝑓𝑠𝑡𝑒𝑝, and transform

easychair: Running title head is undefined. easychair: Running author head is undefined.

in these rules the tail-recursive calls let 𝑥 = 𝑓 𝑝 in 𝑥 into just 𝑝. Note that 𝑓𝑖𝑛, 𝑓𝑠𝑡𝑒𝑝 and
𝑓𝑜𝑢𝑡 correspond to input, iteration and output configurations in [7].

We can now apply the inversion rules on both the calling context and the rules for 𝑓𝑖𝑛, 𝑓𝑠𝑡𝑒𝑝,
and 𝑓𝑜𝑢𝑡.

What remains is to transform the rules back into a form that doesn’t use the iter construct.
The inverse of the calling context that uses the iter construct is of the form

let 𝑦 = 𝑓−1𝑜𝑢𝑡 𝑝0 in let 𝑥 = iter 𝑓−1𝑠𝑡𝑒𝑝 𝑦 in let 𝑝′1 = 𝑓−1𝑖𝑛 𝑥 in 𝑒

and is transformed into

let 𝑦 = 𝑓−1𝑜𝑢𝑡 𝑝0 in let 𝑥 = 𝑓−1 𝑦 in let 𝑝′1 = 𝑓−1𝑖𝑛 𝑥 in 𝑒

We, additionally, transform the right-hand side of the rules for 𝑓−1𝑠𝑡𝑒𝑝 by rewriting their output
patterns 𝑝𝑖 to tail calls: let 𝑧 = 𝑓−1 𝑝𝑖 in 𝑧, where 𝑧 is a new variable. We then rename the
rules for 𝑓−1𝑖𝑛 and 𝑓−1𝑠𝑡𝑒𝑝 to 𝑓−1. The rules for 𝑓−1𝑜𝑢𝑡 are untouched.

This transformation does not guarantee that the inverted rules of functions will have disjoint
input patterns, which is required to guarantee correctness of the inverse functions. So we can
not invert all programs, but we can invert more than without the transformation.

3 Example with Multiple Base Cases

Consider the following variant of the reverse function, that in addition to returning the reversed
list also returns an indication of whether the length of the list is odd or even.

reverseP xs = let z = revP (xs, []) in z

revP ([], ys) = (ys , Even)

revP ([x], ys) = (x:ys , Odd)

revP (x1:x2:xs , ys) = let z = revP (xs , x2:x1:ys) in z

Note the multiple non-recursive rules in revP. We first transform into iterative form:

reverseP xs

= let x = revP𝑖𝑛 xs in

let y = iter revP𝑠𝑡𝑒𝑝 x in

let z = revP𝑜𝑢𝑡 y in z

revP𝑖𝑛 xs = (xs , [])

revP𝑜𝑢𝑡 ([], ys) = (ys , Even)

revP𝑜𝑢𝑡 ([x], ys) = (x:ys , Odd)

revP𝑠𝑡𝑒𝑝 (x1:x2:xs, ys) = (xs, x2:x1:ys)

The program is inverted to

reverseP−1 z

= let y = revP−1𝑜𝑢𝑡 z in

let x = iter revP−1𝑠𝑡𝑒𝑝 y in xs

let xs = revP−1𝑖𝑛 x in xs

revP−1𝑖𝑛 (xs, []) = xs

revP−1𝑜𝑢𝑡 (ys, Even) = ([], ys)

revP−1𝑜𝑢𝑡 (x:ys, Odd) = ([x], ys)

revP−1𝑠𝑡𝑒𝑝 (xs, x2:x1:ys) = (x1:x2:xs, ys)

2

easychair: Running title head is undefined. easychair: Running author head is undefined.

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 → Fid 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 = 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 → Vid | Cid | Cid 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 | (𝑃𝑎𝑡𝑡𝑒𝑟𝑛 , . . . , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛)

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → let 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 in 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → let 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 = Fid 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 in 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → let 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 = iter Fid 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 in 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

where Fid is a function identifier, Vid is a variable identifier, and Cid is a constructor identifier.
We will use Haskell-like shorthands for lists. We apply the restriction that patterns are linear
and variables are used exactly once in their scope. A tail call in this language is of the form
let 𝑥 = 𝑓 𝑝 in 𝑥, where 𝑥 is variable identifier, 𝑓 is a function identifier, and 𝑝 is a pattern.
The semantics of let 𝑝1 = iter 𝑓 𝑝0 in 𝑒, where 𝑝1 is a non-variable pattern, is that, 𝑓 is
called with the value 𝑣0 of 𝑝0 as input, giving a value 𝑣1. If 𝑝1 matches 𝑣1, the matching is
used in 𝑒 (as in a normal let-expression). If 𝑝1 does match 𝑣1, 𝑣1 is fed as input to 𝑓 , and the
output 𝑣2 is matched against 𝑝1 as above, continuing until a match is found.
If 𝑝1 is a variable pattern 𝑦, we need a larger context:
let 𝑦 = iter 𝑓 𝑝0 in let 𝑝1 = 𝑔 𝑦 in 𝑒
Here, iteration continues until a rule in 𝑔 matches 𝑦. This allows multiple different patterns to
match 𝑦, where the simple form above allows only one pattern. This is an extension compared
to previous work [9].

𝐼𝑛𝑣𝐹 (𝑓 𝑝0 = 𝑒0) = 𝑓−1 𝑝1 = 𝑒1, 𝑤ℎ𝑒𝑟𝑒 (𝑝1, 𝑒1) = 𝐼𝑛𝑣(𝑒0, 𝑝0)

𝐼𝑛𝑣(𝑝, 𝑒) = (𝑝, 𝑒)
𝐼𝑛𝑣(let 𝑝0 = 𝑝1 in 𝑒1, 𝑒0) = 𝐼𝑛𝑣(𝑒1, let 𝑝1 = 𝑝0 in 𝑒0)
𝐼𝑛𝑣(let 𝑝0 = 𝑔 𝑝1 in 𝑒1, 𝑒0) = 𝐼𝑛𝑣(𝑒1, let 𝑝1 = 𝑔−1 𝑝0 in 𝑒0)
𝐼𝑛𝑣(let 𝑝0 = iter 𝑔 𝑝1 in 𝑒1, 𝑒0) = 𝐼𝑛𝑣(𝑒1, let 𝑝1 = iter 𝑔−1 𝑝0 in 𝑒0)

Figure 1: Simple function rules and their inversion

which we transform back to tail-recursive style:

reverseP−1 z

= let y = revP−1𝑜𝑢𝑡 z in let xs = revP−1 y in xs

revP−1𝑜𝑢𝑡 (ys , Even) = ([], ys)

revP−1𝑜𝑢𝑡 (x:ys , Odd) = ([x], ys)

revP−1 (xs, []) = xs

revP−1 (xs, x2:x1:ys)

= let w = revP−1 (x1:x2:xs , ys) in w

4 Conclusion

We have presented a program inversion method for a subset of Haskell and extended this with
a method for inverting tail-recursive functions that can handle functions with multiple non-

3

easychair: Running title head is undefined. easychair: Running author head is undefined.

recursive base cases. We have implemented the method, except transformation back to tail-
recursive form. Compared to other methods for inverting tail-recursive functions with multiple
base cases, we find our method relatively simple. The method can be extended to include
non-linear variables and arithmetic, both with some restrictions.

References

[1] Edsger W. Dijkstra. Program inversion. In F. L. Bauer and M. Broy, editors, Program Construc-
tion: International Summer School, LNCS 69, pages 54–57. Springer-Verlag, 1978.

[2] David Eppstein. A heuristic approach to program inversion. In Int. Joint Conference on Artificial
Intelligence (IJCAI-85), pages 219–221. Morgan Kaufmann, Inc., 1985.

[3] David Gries. The Science of Programming, chapter 21 Inverting Programs, pages 265–274. Texts
and Monographs in Computer Science. Springer-Verlag, 1981.

[4] P. G. Harrison and H. Khoshnevisan. On the synthesis of function inverses. Acta Informatica,
29:211–239, 1992.

[5] H. Khoshnevisan and K. M. Sephton. InvX: An automatic function inverter. In Nachum Der-
showitz, editor, Rewriting Techniques and Applications. Proceedings, LNCS 355, pages 564–568.
Springer-Verlag, 1989.

[6] Richard E. Korf. Inversion of applicative programs. In Int. Joint Conference on Artificial Intelli-
gence (IJCAI-81), pages 1007–1009. William Kaufmann, Inc., 1981.

[7] Joachim Tilsted Kristensen, Robin Kaarsgaard, and Michael Kirkedal Thomsen. Tail recursion
transformation for invertible functions. In Reversible Computation, pages 73–88. Springer Nature
Switzerland, 2023.

[8] Torben Æ. Mogensen. Semi-inversion of guarded equations. In GPCE’05, Lecture Notes in Com-
puter Science 3676, pages 189–204. Springer-Verlag, 2005.

[9] Torben Æ. Mogensen. Report on an implementation of a semi-inverter. In PSI’06, Lecture Notes
in Computer Science 4378, pages 322–334. Springer-Verlag, 2007.

[10] A. Y. Romanenko. The generation of inverse functions in Refal. In Dines Bjørner, Andrei P.
Ershov, and Neil D. Jones, editors, Partial Evaluation and Mixed Computation, pages 427–444.
North-Holland, 1988.

[11] Jan L. A. van de Snepscheut. Program inversion (chapter 11). In What Computing is All About,
Texts and Monographs in Computer Science, pages 219–251. Springer-Verlag, 1993.

4

Saving memory by consolidating fragmented lists

Joachim Tilsted Kristensen1 and Matthias Pall Gissurarson2

1 University of Oslo, Norway joachkr@ifi.uio.no
2 Chalmers Institute of Technology, Sweden pallm@chalmers.se

Abstract

Classic texts on algorithms and data structures, such as CLRS[1], focus on the imper-
ative programming paradigm, which favours ephemeral structures and destructive opera-
tions. – Other programming paradigms such as the functional paradigm, does not enjoy
such a rich literature, and it remains challenging to design space efficient persistent data
structures that perform as well as their ephemeral counterparts[2].

In this paper, we present a fragmented representation of lists that achieves constant
time and space complexity for append operations and linear time for traversal in Haskell.
This structure is particularly effective in applications like sorting, where an efficient imple-
mentation of append is essential. – The technique used to develop the structure, generalises
to monoidal contexts in which the result of the computation is an appendable structure,
which is only traversed once.

1 Introduction

Pure functional programs produce immutable data. While this strict discipline provides a great
number of benefits, it can also cause efficiency problems if the wrong data representation is
chosen. For instance, append for lists cannot share the first argument although the initial part
of the resulting list contains precisely the same elements. As illustrated in Figure 1, appending
two lists is usually implemented by copying the elements of the first list with the modification
that the last pointer points to the beginning of the appended list rather than nil.

Figure 1: Append of x and y must make a copy of x to be persistent.

The downside implementing append in this way, is that it leads to an explosion in space
complexity for algorithms that use it extensively. Take for instance the following, naive, imple-
mentation of Quicksort, that splits a list of n elements, until it is split into at most 2n lists,
each containing 0 or 1 element

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort (x:xs) = sort [a | a <- xs, a <= x] ++ [x] ++ sort [a | a <- xs, x < a]

Saving memory by consolidating fragmented lists Kristensen & Gissurarson

It is well known that this function is highly likely to complete the splitting in O(n · lg(n))
comparison operations, and it is generally assumed that this is the most expensive part of its
work. This assumption relies on the ability to do all the appends in O(n) time. However, if
we assume the best case (always split in the middle), then the appends will be O(n2) both
space and time complexity1. This is perhaps not surprising as the worst case time complexity
of Quicksort is O(n2), but the situation is the same for Mergesort.

Figure 2: Deleting an element from xs requires us to make a copy of all elements that occur
prior to the element we want to delete.

In general, any operation that needs to move a pointer in an immutable data-structure has
to copy everything that comes before it. As such, it isn’t just the append operation (++) that,
unexpectedly, consumes vast amounts of time and space. Take for instance delete in Figure 2.

2 Implementation

A potential solution could be to introduce the notion of a fragmented list. A fragmented list
is a list containing a pointer to a list, and an Int, specifying how many elements to take from
there. For instance, the append in Figure 1 could be represented with the list [(x,3), (y,2)],
and the result of delete in Figure 2 could be represented by [(xs, 3), ([x5], 1)].

Traversing this list will be linear, but as it is still a list, and so appending such fragmented
lists is still expensive. We suggest the structure:

data FragmentedList a

= FromList

[a] -- A native list source.

Int -- How many elements

| Append

(FragmentedList a) -- First operand

(FragmentedList a) -- Second operand

[a] -- Lazy consolidation

Int -- Number of elements

Int -- Number of fragments

It represents lists by a pointer to a native list, and a number of elements to take from
there (which allows the implementation of take in constant time), or by the append of two
fragmented list together with the result of lazily appending the two lists.

As Haskell is a lazy functional programming language, the result of appending is not com-
puted until it is demanded (if it is actually needed). For instance, in the Quicksort example,
we only look at the consolidated list in the last version of the structure, and for the merge in
Mergesort, we only need to traverse the consolidation of the resulting list.

1The latter is due to the fact that you cannot use quadratic space in sub-quadratic time

2

Saving memory by consolidating fragmented lists Kristensen & Gissurarson

Furthermore, this structure allows instances of various Haskell type classes, such as Functor,
Applicative, Monad, Traversable and Foldable, the last of which allows specifying consoli-
dation for a fragmented list as a traversal of its elements with foldr as follows:

consolidate :: FragmentedList a -> FragmentedList a

consolidate xs@(FromList _ _) = xs

consolidate (Append xs ys _ e _) = FromList c e

where c = foldr (:) (foldr (:) [] ys) xs

It is important that the above implementation of consolidate does not inspect the result
of consolidated structure, since this would force evaluate the consolidated structure in the
definition of (++) below.

(++) :: FragmentedList a -> FragmentedList a -> FragmentedList a

(++) xs ys =

let c = Append xs ys (consolidate c) (size xs + size ys) (frag xs + frag ys)

in c

Here size is the number of elements of the list, and frag is the number of fragments (From-
List is just 1 fragment). When the ratio, size to fragments grows too large, the programmer
can then continue with the consolidated list to enable garbage collection when appropriate, by
continuing with the consolidated list.

We note further, that since fragmented list is defined in terms of a list and an Int, describing
how many elements to take, a program that uses (++), can guarantee that the result is finite
(even if the underlying native lists are infinite), by choosing a number to put there.

3 Discussion

Currently, we are formulating a library Data.Fragmented.List for Haskell, which, along with
a benchmark, will be published along with in an eventual full paper on the topic, and include
comparisons to other datastructures such as fingertrees. The fragmented list seems promising
for certain algorithms in preliminary benchmarks, but we want to measure it more thoroughly
before making any bold claims.

Future work includes extending the technique of embedding a “consolidating” a monoidal
structure into the structure itself in such a way that we do not need to see all of the intermediate
representations of the structure unless we need to. Potential use cases for this work are program
analysis that output a set of constraints, e.g. by writing sets in the writer monad (which is the
same problem but using union rather than append), as the approach can be generalized to any
monoid (such as monads).

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2nd edition, 2001.

[2] Chris Okasaki. Purely functional data structures. Cambridge University Press, USA, 1998.

3

	Preface
	Program Committee

	Contents
	Invited Keynotes
	 João Saraiva; Energy Efficiency in Programming Languages
	 Sam Staton; Programming theory meets statistical modelling
	 Martin Berger; Towards GPU-accelerated automated reasoning

	Extended Abstracts
	 Duc Anh Nguyen, Philipp Rümmer and Wang Yi; Verification of Data-flow Networks Using the KeY Theorem Prover
	 Thomas Baar and Volker Stolz; Finding Inductive Invariants Fast - A Support Technique for Deductive Software Verification
	 Florian Furbach, Alceste Scalas, Roland Kuhn, Emilio Tuosto and Hernan Melgratti; Compositional Design and Verification of Swarm Protocols
	 Samuel Grahn and Elli Anastasiadi; Modeling systems via register machines for the verification of weak memory models
	 Haining Tong and Keijo Heljanko; GPU Consistency Analysis with Dartagnan
	 Behnam Khodabandeloo, Chengzi Huang, Morteza Mohaqeqi, Susanne Graf and Wang Yi; Buffer Overflow and Deadlock Detection for Timed Kahn Process Networks
	 Chad Nester and Niels Voorneveld; On the Operational Semantics of the Free Cornering with Protocol Choice
	 Andreas Brandhøj, Dat Dieu, Kasper Vesteraa, Danny Poulsen, René Hansen and Kim Larsen; DropShadow: Hypercontracts in Go
	 Till Hofmann and Jens Classen; Strategy Synthesis for First-Order Agent Programs over Finite Traces
	 Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Joseph Tassarotti and Lars Birkedal; Approximate Relational Reasoning for Higher-Order Probabilistic Programs
	 Stian Øverby and Joachim Tilsted Kristensen; Probably: A programming language with stochastic let-bindings
	 Philipp Stassen, Rasmus Ejlers Møgelberg, Maaike Zwart, Alejandro Aguirre and Lars Birkedal; Modelling a Probabilistic Programming Language in Clocked Cubical Type Theory
	 Nikolaj Kristensen, Benjamin Bennetzen, Daniel Kleist, Peter Steffensen, Emilie Steinmann and Loke Walsted; A Type System to Ensure Non-interference in ReScript
	 Ksenija Kivojenko, Edwin Smagin, Ian Erik Varatalu and Juhan Ernits; Towards text extraction learning with regular expressions extended with complement, intersection and lookarounds
	 Nikolaj Kristensen, Benjamin Bennetzen, Loke Walsted, Peter Steffensen, Emilie Steinmann and Daniel Kleist; Cost Analysis for Import and Export Using an Abstract Machine
	 Fritz Henglein, Changjun Li and Mikkel Kragh Mathiesen; Simple Worst-Case Optimal Joins
	 Timmie Lagermann, Kristina Carter, Su Ho and Maja Kirkeby; UI Test Automation Framework for Energy Analysis: Exploring Energy Compositionality of Actions
	 Joel Nyholm, Wojciech Mostowski and Christoph Reichenbach; Bayesian Energy Profiler for Java
	 Christian Kalhauge; Input Reduction Revisited
	 Torben Ægidius Mogensen; A Simple Method for Inverting Tail-Recursive Functions
	 Joachim Kristensen and Matthias Gissurarson; Saving memory by consolidating fragmented lists

